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Chapter One

Introduction
Pterosaurs took to the air long before birds and from the hideous and ferocious pterodactyls of  

Arthur Conan-Doyle’s fictional Lost World to the “leather-winged harpies” of  Mark Witton’s recent 

biography of  the Pterosauria, these flying reptiles have long been a source of  fascination. Many have 

asked questions about how well they flew, how they compared with birds and how large they became. Yet 

such questions are difficult to answer: from an engineering perspective in particular, the pterosaur 

literature contains precious little information on the shape of  the wings, the aerodynamic performance of  

the wing airfoils, the structural characteristics of  the wing bone “spar” that supported the membrane or 

indeed the properties of  the membrane itself.

This study sets out to redress some of  these deficiencies and produce new models of  pterosaur 

flight, with particular reference to the large species (with wingspans of  6m or more) and the role that 

structural flexibility may have played in their flight dynamics.

1.1 The Pterosauria
Pterosaurs were the dominant flying animals of  the early Mesozoic (Figure 1.1). Their origin is 

debated and since intermediary fossils are absent, they appear to have sprung, flight-ready, into the fossil 

record, perhaps as early as at the Triassic Carnian/Norian boundary (Faxinalipterus minima Bonaparte et al. 

2010) or most certainly by the middle/late Norian (Preondactylus bufarinii Wild 1984) (Figure 1.2). The 

phylogenetic position of  the pterosaurs has long been debated, but the current prevailing view is that they 

evolved from an as yet unknown archosaurian common ancestor in the mid Triassic (for example Lu et al. 

2010, Andres 2007, Wang et al. 2012). These earliest representatives of  the lineage were small animals 

(wingspan less than 0.5m) with large, toothed skulls and long bony tails (Figure 1.4).

By the early Jurassic the diversity was increasing, but overall size remained modest, with the largest 

being Dimorphodon with a 1.3m wingspan. By the mid-late Jurassic (about the time when feathered 

dinosaurs were starting to take to the air), short tailed pterodactyloid species started to appear and by the 

mid Cretaceous this had become the prevailing body plan (although it is unclear why this was so (Prentice 

et al. 2011) (Figure 1.3 and 1.4). With the transition from tailed to more or less tailless, there was an 

increase in size. The largest tailed (non-pterodactyloid) pterosaurs were around 2.5m wing span 

(Carpenter et al. 2003), but even some of  the earliest pterodactyloids, for example Istiodactlylus latidens had 

a wingspan approaching 4.5m (Hooley 1913, Howse et al. 2001), larger than any extant bird. An excellent 
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and comprehensive review of  the Pterosauria can be found in Middleton & English (2014) and up-to-date 

species by species descriptions in Witton (2013) so a high level of  detail will not be duplicated here.

During the Cretaceous, pterosaur diversity and disparity initially increased dramatically, but while 

the possibility of  sampling bias should not be dismissed (Kellner 2003, Butler et al. 2009, Prentice et al. 

2011) it appears that by the end of  the Cretaceous the diversity had collapsed and the dominant species 

were azhdarchids. With the “great flowering” of  the Cretaceous came diversity in the ecological niches 

occupied and diversity in size (Figure 1.5). Certain species exhibited trends towards gigantism, with 

ornithocheirids such as Ornithocheirus, Anhanguera and Coloborhynchus commonly reaching 4m to 5m, 

sometimes as much as 6m to 7m wing span (Wilkinson 2008) and in the case of  Tropeoghnathus as much as 

8.3m (Kellner et al. 2013). Pteranodon, the film star pterosaur, regularly attained wing spans in excess of  6m 

(Bennett 2001), with the largest individuals reaching 7.25m. This is larger than any birds extant or fossil 

and should be compared to the largest bird ever, the proposed 6.4m span of  Pelagornis sandersi (Ksepka 

2014) and the 6.5-7.0m Argentavis (Palmqvist & Viscaino 2003). By the late Cretaceous, some pterosaurs 

had become the largest animals ever to fly, and even larger were to come.

Towards the end of  the Cretaceous, although pterosaur diversity decreased, the size of  the 

dominant azhdarchids increased greatly. The smallest of  these, for example Montanazhdarcho, had a wing 

span of  2.5m, but most were in the 4-6m size range (Company et al.1999 for example). However, there is 

evidence of  some that were much larger still, with early estimates of  the wing span of  Quetzalcoatlus 

northropi of  up to 15m (Lawson 1975), subsequently clipped to 11-12m (Langston 1981). Most recently, 

Witton & Habib (2010) have suggested that a further reduction better fits the fossil evidence, but still 

estimate the wing span to have been 10-11m. In addition to Q. northropi (which has yet to be formally 

described in the literature) very fragmentary remains of  two other species of  giant azhdarchid have been 

described: Arambourgiania (Frey & Martill 1996) and Haztegopteryx (Buffetaut et al. 2002, 2003) with the 

authors making wing span estimates of  12-13m and 12m respectively. Witton & Habib (2010) reassessed 

the material and concluded that there is no convincing evidence for wing span in excess of  10-11m for 

any azhdarchid.

1.2 Wing Morphology
In all pterosaurs the wing is comprised of  a thin soft tissue membrane attached proximally to the 

body and hind limbs (extending most likely as far as the ankle) and supported anteriorly/distally by the 

bones of  the forelimb. Between the glenoid and the wrist the membrane (generally, the patagium) extends 

from both the anterior and posterior sides of  the wing bones, anteriorly forming a narrow, triangular 

propatagium. Beyond the wrist the patagium is only present on the posterior side of  the wing bones, and 

is attached distally to the metacarpal and four hyper-elongated wing phalanges. It has no other bony 

tissue support, unlike bats where the wing fingers extend posteriorly (Figures 1.6 & 1.7).
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While the dimensions of  the wing bones are known from the fossil record (see Chapter 4 for more 

detail), the composition of  the wing membrane is rather more of  a mystery. Very few fossils preserve this 

soft tissue and in all those that do the remains are incomplete. However, it is now generally accepted (see 

Witton 2013:51-55 for the most up to date overview) that the membrane was thin (perhaps less than 1mm 

thick) and made from soft tissue layers containing blood vessels, muscle fibres and, unique to pterosaurs, 

higher tensile fibres, known as aktinofibrils, described in more detail in Chapter 6.

1.3 Mass estimation
The flight performance of  any animal or indeed aircraft is intimately linked not only to its 

wingspan (and wing area) but also to its mass. In general terms, the heavier the animal for any given wing 

area the faster it will fly, although weight alone does not necessarily affect flight efficiency as measured by 

lift to drag ratio. The total mass also has important implications for takeoff  and landing and is most likely 

a more significant consideration for these flight behaviours than for the steady flight.

Until quite recently the majority of  mass estimates for pterosaurs have pointed to animals with a 

very low mass in relation to their size (Brower & Venius 1981, Hazlehurst & Rayner 1992b, Chatterjee & 

Templin 2004) as well as some dissenters to these “low weight” views, for example Paul (1990) and 

Marden (1994), who proposed a 250kg mass for Quetzalcoatlus. Bramwell & Whitfield (1974) estimated the 

mass of  Pteranodon using a slicing method and proposed a mass of  16.6kg for an animal of  almost 7m 

wingspan and noted that an extrapolation of  bird data would have predicted a mass of  100kg. Typically 

these low weight estimates have a scaling exponent (based on data from birds) of  about 2.4 on span 

(exhibiting negative allometry) and a proportionality constant of  0.2. This scaling then results in a mass of  

around 80kg for one of  the largest known pterosaurs, the 10m to 11m wingspan Quetzalcoatlus, which 

implies an improbably low average specific gravity of  0.2 (Witton 2009). In this context it should be noted 

that recent work on the scaling for birds (Taylor and Thomas 2014) has shown that when corrected for 

phylogeny, the scaling exponent is close to isometry, in other word an exponent of  3.0. If  this figure is 

applicable to pterosaurs, then it would result in increased mass estimates for the larger animals.

Recently these higher mass estimates have received new support. Witton (2009) used a dry skeletal 

mass estimation approach that gave an exponent of  2.4 but a much larger proportionality constant. Using 

Witton's (2009) methodology, the mass of  a 7m Pteranodon is predicted to be around 50kg and that of  

Quetzalcoatlus nearer to 250kg. This matter is far from resolved amongst pterosaur workers, but the higher 

range of  mass estimates has recently received further support (Prondvai et al. 2008, Henderson 2009). In 

fact Henderson (2009) used a volumetric approach to predict a mass for Quetzalcoatlus of  more than 500kg, 

but this has been strongly criticised (Witton and Habib 2010) and it is perhaps fair to say that the current 

consensus view is for a mass of  around 250kg for a 10m wingspan individual.

Whatever the minutiae of  the debates about their maximum size, at the extreme end of  the 

spectrum and based on very fragmentary remains, it does appear that by the end of  the Cretaceous the 
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largest azhdarchids grew to have a wing span of  at least 10m and a mass of  250kg, three times the span 

of  the largest extant bird and almost twice that of  the largest fossil birds (Figure 1.7). Earlier in the period, 

very robust fossil evidence shows that Pteranodon and various ornithocheirids were commonly 6-7m in wing 

span, so for many millions of  years pterosaurs were certainly larger than any birds that ever roamed the 

skies.

1.4 Biomechanical studies of flight
At first sight the flight of  pterosaurs appears to be well described. As early as 1914, Hankin & 

Watson (1914) and Short (1914) provided wide ranging initial assessments and identified that these 

animals would have flown at relatively low speeds when compared to birds. They were also aware of  the 

fragility of  pterosaur bones and how this might limit landing speed.

Wellnhofer’s pterosaur encyclopaedia (Wellnhofer 1991a) and Unwin’s more recent Pterosaurs from 

Deep Time (Unwin 2005) contain numerous illustrations depicting pterosaurs as masters of  the air, a trend 

ably maintained by Witton (2013). In the intervening period a substantial literature has grown up 

examining the aerodynamics of  pterosaurs.

1.4.1 Historical studies
In the early 70s, Bramwell and Whitfield produced what are arguably the classic biomechanical 

studies of  large pterosaurs (Bramwell 1971, Bramwell & Whitfield 1970, Bramwell & Whitfield 1974, 

Bramwell et al. 1974). These were very comprehensive, landmark studies of  the biomechanics and 

aerodynamics of  Pteranodon, combining excellent understandings of  both morphology and aerodynamics 

and remain to this day the only truly multidisciplinary papers on the subject. They contained pioneering 

work on aspects such as mass and centre of  mass estimation and the authors recognised that under the 

flight regime appropriate to pterosaurs, a thin membrane wing was not necessarily as inefficient as might 

be supposed when compared to a ‘proper’ airfoil of  the type familiar from aircraft. They also recognised 

that the wing bones were not sufficiently strong to support a membrane tensioned by a tendon along its 

posterior margin and based on their assessment of  the static balance reconstructed an animal with 

forward (anterior) sweep to the wings (Figure 1.9). To understand their likely wing flight strokes and mode 

of  land based locomotion they built mechanical, articulated models, fore-runners to the computer based 

3D modelling so widespread today. With hindsight, there are some aspects of  these papers which no 

longer ring true, for example the proposed locking of  the shoulder joint inspired by reference to 

albatrosses and the use of  the crest as an aerodynamic stabiliser, but otherwise they have more than stood 

the test of  time.

Stein (1975) sought to build on this work and reported the results of  wind tunnel tests on wing 

models. Unfortunately, the results cannot be reconciled with any other published aerodynamic results as 

they contain impossibly high values of  maximum lift coefficient (CLmax) of  up to 3.8 for a single surface 
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wing section (McMasters & Henderson 1979, Hoerner 1985:Chapter 4, Smith & Shyy 1996) and 

minimum drag coefficients that range from <0.01 to 0.7 for similar wing forms. (See Glossary for 

definitions of  these terms and more explanation as to their aerodynamic significance.) The important 

point for now is that unfortunately the absence of  detailed descriptions of  the experiments coupled with 

the use of  flexible, three dimensional models subject to uncontrolled distortion means that the anomalous 

results cast grave doubts over the validity of  the conclusions. Stein (1975) also speculated that there was a 

membrane between the crest and the neck of  the animal that might have been used for steering, a notion 

that has received no further support. However one point that Stein (1975) did make, which had until then 

attracted little attention, is that under aerodynamic load the wing would be subject to span-wise 

(mediolateral) twisting (raising the caudal edge of  the wing relative to the wing spar) (Figure 1.10). This 

would have significant aerodynamic effects by changing the lift distribution along the wing and possibly 

providing pitch stability (Jones 1941, Dowlan 1944) - but see Chapters 3 and 4 for a discussion of  this 

point. Like Bramwell & Whitfield (1974) he drew the wing with substantial forward sweep.

In 1982 Sneyd and others (Sneyd et al. 1982) made perhaps the first attempt to study the effects of  

wing membrane flexibility on the aerodynamics of  Pteranodon. Unfortunately they had to make so many 

simplifying assumptions that the paper is in reality little more than a mathematical exercise with limited 

practical application. In particular, whilst they agree with Bramwell & Whitfield (1974) that spanwise 

membrane tension was the most likely, they modelled a wing with chordwise tension since it was the only 

way to obtain “...a tractable mathematical problem…” (Sneyd et al. 1982:463). Despite these limitations, the 

discussion of  pitch stability is revealing, in which Sneyd et al. (1982) and in more detail in Sneyd (1984) 

show theoretically that flexible wing sections have flight stability characteristics that are different from a 

rigid wing - they are neutrally stable in pitch. This has more recently been confirmed experimentally 

(Bleischwitz et al. 2015)

Static stability will be discussed in more detail in Chapter 7, but briefly, a planar wing with rigid, 

cambered wing sections (typical of  the great majority of  aeroplanes) is what is termed statically unstable 

in pitch. This means that if  the wing is flying steadily and is subject to a change in the airflow, from a gust 

for example, the resulting change in the aerodynamic forces is such as to induce instability (Figure 1.11). 

In conventional aeroplanes this tendency is counteracted by the tail, and in flying wings by the use of  

either special, statically stable “reflex” wing sections or by a combination of  wing sweep and wing twist. 

The more stable the airplane configuration, the less manoeuvrable it becomes. Because of  this, Maynard-

Smith (1952) argued that birds and pterosaurs would tend to evolve towards being statically unstable, and 

in the absence of  any experimental or other direct evidence, speculated as follows: “There is, in fact, good 

evidence that birds do not need to be stable in order to fly. In some birds there is no tail in an aerodynamic sense at all. Other 

birds, which normally possess a tail, can fly without it; this can often be observed in the case of  sparrows which have 

completely lost their tails. In fact, in most birds the tail does not seem to act as a stabiliser, but as an accessory lifting surface 

when flying slowly. This can be observed, for example, in the case of  gulls. These birds open their tails only when turning 
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sharply or flying slowly. It can then be seen that the slower the bird flies the more tail is lowered; as mentioned above, this is 

characteristic of  the unstable state.” (Maynard-Smith 1952:2)

Bramwell & Whitfield (1974) relied on Maynard Smith’s (1952) view and speculated that Pteranodon 

was statically unstable in pitch but had sufficient neurological control to maintain stability by active 

means.  In fact, for birds, others Hoey (1992), Krus (1992), Taylor & Thomas (2001) disagree with 

Maynard Smith (1952), based on rather more extensive experimental, theoretical and observational 

evidence and Sneyd et al. (1982) argue from a calculation of  the likely pitch rate that Pteranodon’s 

neurological reaction time would be inadequate. To this, I would add the observation that however fast 

the animal’s brain may be able to react, the control surfaces are flexible structures, which would greatly 

compromise the possibility of  making the fast, precise control responses required to limit the pitch 

excursions. Add to this the prediction that flexible wing sections are neutrally stable in pitch and it seems 

very unlikely that pterosaurs were statically unstable about this axis.

Brower (1983) produced an extensive aerodynamic study of  Pteranodon and Nyctosaurus but did not 

really offer any additional insights over and above those that had already been made by Bramwell and 

Whitfield. In part, this was because all these authors had to rely on the pre-50’s aerodynamic literature to 

obtain wing section data, necessarily unrepresentative of  actual pterosaur wing profiles.

Padian (1985) was rather critical of  what he saw as the aerodynamic bias in these earlier papers. He 

argued that such work needed to be better informed by knowledge of  the animals’ biology, which is 

curious in the case of  Bramwell and Whitfield’s papers in view of  Bramwell’s thoughtful and 

comprehensive anatomical contributions. Whilst there may be some validity to his views, Padian (1985) 

voiced the surprising opinion that the aktinofibrils were orientated at right angles to the tension in the 

wing membrane, paralleling the feather shafts of  birds and the fingers of  bats. This is a very perplexing 

conclusion given that Padian was a co-author of  an earlier paper that showed from detailed observations 

of  fossil specimens that the aktinofibrils ran more or less sub-parallel to the wing spar in the distal regions 

of  the wing (Padian & Rayner 1993, Figure 1.12), precisely the expected direction of  tension in the 

membrane predicted by Bramwell & Whitfield (1974). Padian (1985) used his conclusion to argue that 

pterosaurs could change the shape of  the wing membrane in flight because as the wing spar flexed these 

fibres would contract to take up the slack. As a result he argued that the animal might be capable of  

achieving an extended range of  flight speeds as compared to a wing lacking this “morphing” capability. 

Further, Padian (1985) took the view that the posterior margin of  the wing was anchored to the 

body and that the hind limbs were free. From this conclusion, Padian (1985) argued for a narrow chord 

wing, resulting in less wing area and thus higher wing loadings and higher flight speeds (an inevitable 

aerodynamic consequence) than estimated by others. This membrane attachment morphology is now 

considered extremely unlikely (Unwin 2005, Elgin et al. 2009), and it is anyway possible to envisage a 

narrow wing associated with an attachment to the ankle (Figure 1.13). Padian (1985) also argued that the 
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forward sweep of  the wings proposed by Bramwell & Whitfield (1974) was unlikely but did not indicate 

the implications of  this difference in interpretation or the reason for his view. 

His paper concluded by arguing that if  only engineers took proper account of  the biology then they 

might come up with a Pteranodon with “….higher speeds more manoeuvrability and better takeoff  and landing 

performance.” (Padian 1985:429). This speculative (and possibly wishful) view of  pterosaurs as exceptional 

fliers prevails and can be found to this day in, for example, Hone’s pterosaur blog (http://

archosaurmusings.wordpress.com) which contains the following “These were no clumsy fliers with big, ungainly, 

leathery wings but had highly derived wings with multiple layers of  specialised tissues providing an integrated ability to 

control the shape and camber of  the wing during flight. It would make them exceptionally competent aeronauts and easily the 

equal of  birds and bats, and quite possibly, in the case of  pterodactyloids at least, their superior.” To support this view he 

states, without any justification, that pterosaurs can change the shape (camber) of  their wings by 

contracting or relaxing the muscle fibres and that the aktinofibrils are “stiffening rods”. There is no direct 

evidence of  the former and simple mechanical analysis demonstrates that the small diameter aktinofibrils 

were not “rod-like” to the extent that the term suggests they can provide out-of-plane stiffness. (See 

Section Chapter 6 for more detail.)

In the late 80s and early 90s a number of  people who had previously worked on birds made 

contributions to understanding pterosaur flight (Pennycuick 1988; 1990, Padian & Rayner 1991; 1993, 

Hazlehurst & Rayner 1992a; 1992b). Pennycuick (1988) went so far as to question the very existence of  

the aktinofibrils, suggesting instead that what was seen in the fossils were wrinkles caused by contraction 

of  the membrane material, analogous to the highly extensible tissue around the jaws of  some whales.

1.4.2 Revival of interest
Since the mid 1990s there has been a revival of  interest in the flight characteristics of  pterosaurs, 

starting with Bennett (2000) who looked at the role of  the aktinofibrils. This study was clearly based on an 

exceptional knowledge of  the fossils and anatomy, but the engineering conclusions were less convincing. 

He appeared to suggest (Figure 1.14) that these very fine fibres (around the same cross section as a human 

hair (Martill & Unwin 1989, Padian & Rayner 1991, Unwin et al. 1993) were capable of  resisting 

compression and thus enabled the posterior margin of  the wing membrane to be convex, somewhat in the 

manner of  modern yacht sails that are supported by battens in compression. As a result of  this “cable and 

strut” model of  the structural role of  the aktinofibrils, Bennet (2000) was also of  the view (like Padian 

1985) that the membrane tension was directed more or less normal to the aktinofibril orientation, with 

these fibres acting as “spreading elements” somewhat like the struts in a paper hand held fan. Bennett 

(2000) maintained this was required to stop the membrane contracting chordwise as it was tensioned 

spanwise. However, Bennett (2000) made no estimates of  the likely chordwise contraction, nor did he state 

why it was necessarily a functional problem. This model of  aktinofibril behaviour requires that they are 

capable of  resisting compressive forces, but it is mechanically impossible for fibres as thin as the 
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aktinofibrils and embedded in a soft tissue matrix to perform in this way, in other words to be the 

“stiffening rods” that Hone describes or the “spreading elements” that Bennett (2000) describes (see 

Chapter 7 for more detail of  the reasons for this view).

In 2003, Frey and co-workers (Frey et al. 2003) speculated on the possible aerodynamic effects of  the 

different wing attachment locations in Cretaceous pterosaurs, noting that the vertical location of  the 

glenoid varies from high to mid-level to low in ornithocheirid, azhdarchid and tapejaroids respectively. 

They coined the terms “top-decker”, “middle-decker” and “bottom-decker” for these wing locations and 

saw the varied positions as a response to differing lateral stability requirements, using an analysis based on 

the aerodynamics of  fixed wing aircraft which has doubtful relevance to an animal with wings that are 

flexible and can be articled relative to the body. The paper over-interprets the possible aerodynamic 

influences of  morphological features, finding an engineering or biomechanical explanation for them with 

precious little experimental or even theoretical justification. 

In the same year, Wilkinson completed his Ph.D. thesis on the flight of  ornithocheirid pterosaurs 

(Wilkinson 2003) and from that flowed a number of  papers that taken together probably represent the 

most thoughtful approach so far to understanding the flight of  these animals, summarised in Wilkinson 

(2008). Wilkinson combined a deep understanding of  the fossils, mainly from examination of  the 

Cambridge Greensand material, with informed speculation about aerodynamics. 

1.4.3 The pteroid debate
However, in 2006 he and others reported work (Wilkinson et al. 2006) which used wind tunnel tests 

to examine the role of  the propatagium on the aerodynamic performance of  the pterosaur wing section. 

Wilkinson et al. (2006) used the results of  these tests to support an anterior orientation for the pteroid 

(Wilkinson et al. 2006, Wilkinson 2007; 2008) (Figure 1-15). The pteroid is a bone unique to pterosaurs, 

which is attached in the region of  the wrist and positioned on the anterior side. Historically it had been 

assumed that the pteroid articulated with the fovea in the preaxial carpal and was orientated so as to point 

medially, a view that retains support (Bennett 2007, Prondvai & Hone 2008). Bennett, a vociferous 

advocate of  the medial orientation, maintains that the pteroid is located at the side of  the pre-axial carpal 

and that there was a sesamoid located in the fovea. As early as 1914 however, Hankin (1914) proposed 

that the pteroid might have been directed anteriorly but this was not supported by others until 1981 (Frey 

& Riess 1981), in a paper that argued for an anterior orientation and a very extensive propatagium. Frey 

no longer holds this view and now advocates (Frey et al. 2006) the medial orientation and an articulation 

directly onto the proximal carpal.

The views of  Wilkinson and co-authors (2006, 2008) are at odds with this. They proposed that the 

pteroid was not only articulated with the preaxial carpal but was also directed anteriorly, thus providing a 

very much larger propatagium area than in other reconstructions, with the pteroid deployed to depress 

the propatagium in a morphology analogous the the Krueger flap used on aircraft (Fullmer 1948), 
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enabling the wing to generate high lift. They undertook wind tunnel testing (Wilkinson et al. 2006) to 

investigate these effects, results that were at the time the only tests that specifically represented possible 

pterosaur wing sections. Wilkinson et al. (2006) used a circular cross section spar and investigated a wing 

bone/patagium and also two propatagium/wing bone/patagium configurations. At face value the results 

of  the wind tunnel tests look impressive, but on closer examination they proved to be less convincing and 

contain little that could not have been found by consulting the aerodynamic and sailing yacht literature. 

When testing wing sections, two key parameters of  interest are the lift and the drag. Conventionally, 

(Anderson 2007:24) these values are non-dimensionalised by the dynamic air pressure in order to allow 

comparison with other results, giving two coefficients, the lift coefficient (Cl) and drag coefficient (Cd) (with 

lower case suffixes: see Glossary for derivations). Cl is used for the results from 2D tests and CL for those 

from complete aircraft.

The values of  Cl and Cd vary with the characteristics of  the airfoil section and the angle of  attack 

relative to the on-coming flow. As angle of  attack increases, so too do Cl and Cd, to a point where Cl 

reaches a maximum (Clmax) at the stall, where the airflow breaks down across the section. 

A common way of  presenting these data for both evaluation and comparison with other results is in 

the from of  a polar plot, where Cl is plotted against Cd (Figure 1.16).

To a lesser extent, the values of  Cl and Cd are dependent upon the Reynolds number (Re) of  the 

airflow, a dimensionless index that characterises fluid flows (Vogel 1985:84, Anderson 2007:38; Hoerner 

1965:1-9). (See Glossary for derivation).

The value of  Re ranges over many orders of  magnitude for living organisms - from 0.00001 for a 

bacterium to 300,000,000 for a large whale (Vogel 1985:86). Most flying vertebrates fall in the range from 

around 50,000 to 500,000, which happens to be the so-called transition region - where flows change from 

being largely laminar to largely turbulent and consequently the flow characteristics around a body are 

very sensitive to the shape and conditions of  the surface. Typically, the Reynolds number for large 

pterosaurs is in the range from 200,000 to 500,000 (assuming flight speeds in the 15m/s to 20m/s range 

and wing chord of  around 0.3m to 0.5m, based on reconstructions in Bramwell & Whitfield (1974) and 

Bennett (2000)). For a more detailed discussion, see Section 2.3.3.

The Reynolds number of  the tests reported by Wilkinson et al. (2006) were not given, which 

complicates their interpretation and the results are in places inconsistent with other well established data. 

For example, the spar diameter to wing section chord ratio was 9.2% for the patagium configuration, but 

the minimum profile drag coefficient was only 0.02 - an implausibly low value for such a section since a 

value of  0.02 is associated with a flat plate or low camber thin airfoil (Marchaj 1988:312-325). Therefore 

the results for the patagium only configurations should be treated with considerable caution. The sections 

with fore-wings (propatagia) had higher minimum drag coefficient values - in the range from 0.05 to 0.10, 

which are more in line with other result (Marchaj 1996:103, Chaplin et al. 2004). However, Wilkinson et al. 
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(2006) reported a maximum lift coefficient (Cl) of  only 1.5 at a camber ratio of  15%, a low value 

compared to other published results and it appears that the value was still increasing when the tests were 

curtailed. In the case of  the section with the broad propatagium, higher values of  lift coefficient were 

recorded - up to 2.5 for the highest camber section. Measurements from the figures in Wilkinson et al. 

(2006) indicate that the overall camber ratio for this section was in the order of  20%, so the Cl value of  

2.5 is not unexpected or in any way exceptional (Milgram 1971, Hoerner 1985:Chapter 4). The same 

camber applied to the patagium-only section may well have produced similar results had the experiments 

been extended to full stall, so it does not appear necessary to invoke a broad propatagium as the only 

possible high lift mechanism for a pterosaur wing.

It is well established in the aeronautical literature that high camber results in high lift coefficient and 

also that thin airfoils can be efficient at low Reynolds number (see for example Marchaj (1979:302-326) 

and Hoerner (1985:4-11). Hoerner (1985) also presents data which shows the effect of  camber on Clmax for 

thin sections, peaking at Clmax = 1.8 for a camber ratio of  15% (the highest for which data was available). 

Milgram (1971) investigated highly cambered sections at Reynolds numbers below 106 and measured Clmax 

of  up to 2.6 at a camber ratio of  18%. He found a slight variation with the shape of  the mean line (the 

distribution of  the camber across the chord) but this was a much less significant than the camber ratio. 

NACA tests of  the Krueger flap (Fullmer 1948) were carried out at a higher Reynolds number than is 

appropriate for pterosaurs, but nonetheless demonstrated that the device can produce a substantial 

increase in Clmax (from 1.1 to 1.8). All these results are therefore generally supportive of  the results 

reported by Wilkinson et al. (2006), but they do not provide any reason to suggest that the pterosaur wing 

sections achieved a unexpectedly high lift performance. Increased camber results in an increased 

maximum lift coefficient and the results in Wilkinson et al. (2006) serve only to confirm what is already 

well known in the aerodynamic literature.

The fact remains that there is potential for the proximal wing to generate high lift with a depressed, 

anteriorly oriented pteroid since this increases the local camber of  the wing sections. However, with such 

a pteroid orientation, the inner portion of  the wing is in effect twisted nose down by around 10 degrees 

relative to the distal regions, resulting in the these sections being at or beyond stall, which would greatly 

reduce the overall effectiveness of  the wing. In additions to this aerodynamic reservation, there are a 

number of  other reasons to be sceptical of  an anterior orientation for the pteroid:

• the bending strength of  the pteroid; 

• the lack of  evidence for restraining tissue; 

• the requirements for excessive propatagium strain; 

• some evidence for longitudinal curvature in pteroids giving an upturned tip, and finally 

• the poor aerodynamic performance of  a stepped leading-edge, 
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These views are developed in more detail in a paper published in 2009 (Palmer & Dyke 2009), 

which strongly argued for a medial orientation.

1.4.4 Coming up to date
Returning to the more general history of  biomechanical studies of  pterosaurs, Strang et al. (2009) 

theoretically modelled the flapping flight of  pterosaurs using panel codes (see Chapters 3 and 7 for more 

detail of  these approaches to aerodynamic modelling) as part of  a programme to develop flapping micro 

air vehicles. Their results suggest that even large pterosaurs could be efficient flapping fliers and that a 

high flapping propulsive efficiency (>70%) could be achieved without the varying wing span (reduced 

span during the upstroke) seen in birds, a behaviour that is less likely to have been practical for pterosaurs 

since it would result in reduced membrane tension and an associated drag penalty (see Chapter 6).

Most recently, a comprehensive paper (Witton & Habib 2010) represents the published “final word” 

on the general biomechanics of  pterosaur flight, with particular emphasis on the limits to size. They 

review the literature and fossil evidence for large pterosaurs and conclude that there is little support for 

sizes above 10-11m wing span and an associated mass of  around 250kg. They note that large pterosaurs, 

the azhdarchids in particular, have very robust forelimbs when compared to birds, and relatively gracile 

hind limbs, a morphological trend that they attribute to the proposed quadrupedal launch behaviour (See 

Chapter 8). They modelled the flight of  these large animals using Pennycuick’s FLIGHT program 

(Pennycuick 2008), which was developed for relatively smaller birds with very different wing aerodynamics 

and morphology, so it may not be entirely reliable for pterosaurs. Witton & Habib (2010) showed that 

large pterosaurs could have had sufficient flight muscle mass to undertake flap-gliding, but most likely not 

continuous flight. Using aerobic muscle power they could climb to sufficient altitude to have a good 

chance of  finding thermal or ridge lift. 

Crucially to these calculations, the authors note that pterosaurs most likely had a higher flight 

muscle mass fraction than birds as a result of  their “front heavy” anatomy. For this reason, and others 

based on a range of  morphological characters, they make the important point that pterosaurs are not 

birds, and that extrapolating from bird behaviour and capabilities is of  limited usefulness in 

understanding pterosaurs. They are not new in noting this. Bramwell & Whitfield (1974:533) said 

“Pteranodon is not a bird, nor a bat, but a pterosaur with its own peculiar structure.” but Witton & Habib (2010) bring 

together more lines of  evidence to support this view. Lastly, Witton & Habib (2010) note that pterosaurs 

varied substantially in morphology and that the two giants, Pterandon and Quetzalcoatlus were far from 

similar. Thus not only is it unreliable to use birds as analogues, but even general statements about giant 

pterosaurs are difficult due to large differences in morphology.
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1.5 Flight simulation
Several of  the existing studies of  pterosaur flight have been largely based on biological approaches 

to understanding flight mechanics (Padian 1985, Padian & Rayner 1991; 1993, Hazlehurst & Rayner 

1992a; 1992b). They demonstrate that the fossil record provides a reasonably comprehensive data source 

for overall skeletal dimensions and to a lesser extent for wing geometry and this allows allometric 

approaches to the effects of  size to be studied. When combined with estimates of  wing area and total 

mass, these allometric approaches have provided some insight into the possible flight style of  pterosaurs 

and how this compares to extant birds. 

However, from an engineering point of  view, the available data is very limited since in order to 

analyse gliding flight capabilities it is necessary to have information about the basic performance of  the 

aerofoil sections (so called 2D data) and to then assemble the aerofoils into a three dimensional wing, 

which will have a specific outline shape and distribution of  aerofoil orientation (twist) along its span (3D 

aerodynamic data). These data, combined with estimates of  total mass and wing area can then be used to 

reconstruct flight performance, often presented in the form of  flight “polars” - curves that relate 

horizontal speed to sinking speed. This basic data can then be used to make first approximations to the 

power required for level or climbing flight. This approach to modelling flight has been central to the 

development of  aircraft and more detail of  the aerodynamic background is given in Chapter 3. An 

overview of  the variable that need to be considered is shown in Figure 1.17

Historically scant information has been available on the likely airfoil sections (2D data) applicable to 

pterosaurs. Comparison of  the available cambered plate data from early aeronautical sources (as used by 

Bramwell & Whitfield 1974) with more recent results from masts and sail tests demonstrate significant 

efficiency degradation due to the presence of  a leading edge spar (see Figure 1.18 and Chapter 2), but 

these results are insufficient to create 2D data for likely pterosaur wing sections, and certainly totally 

inadequate to understand their sensitivity to different assumptions about the wing morphology. 

1.6 Modelling the complete animal
In order to model the complete animal, the results of  the aerodynamic modelling must be 

combined with the structural characteristics of  the wing spar and wing membrane. While wing bone 

morphology was apparently well described in the literature, on close inspection the available information 

was completely inadequate for calculating the structural strength of  the wing since details of  wing bone 

cross sectional morphology was almost completely absent save for frequent reference to pterosaur wing 

bones being thin walled and a few representative sections in sources such as Bramwell & Whitfield (1974). 

However, a model of  the structural characteristics of  the wing spar is crucial to understanding the role of  

structural flexibility, the structural limits of  the flight envelope and possible limits to size since the wing 
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spar was likely to have deflected significantly under load, changing the shape of  the wing and affecting its 

dynamic response to aerodynamic forces. 

1.7 New approaches
This study therefore sets out to redress some of  these deficiencies and produce new, more complete 

models of  pterosaur flight. Specifically, the research asks the following questions and sets out to test a 

related hypothesis:

Overarching question
How did wing flexibility shape the aerodynamic performance of  pterosaurs and did it influence the 

limits to their size?

Supplementary questions
i. What was it about their morphology that enabled pterosaurs to achieve such large sizes? 

ii. Were the Late Cretaceous giants pushing against these physical limits, or given the right 

environmental circumstances, could they have become larger still? 

Related hypothesis
 Wing flexibility was a significant factor in determining the aerodynamic performance. 

Approach
The approach adopted was a mix of  physical and computer modelling:

• Experimental and theoretical investigations to quantify the two dimensional performance of  

likely pterosaur airfoils.

• Construction of  three-dimensional gliding flight computer models to predict overall flight 

envelopes.

• Computer modelling of  wing morphology to define likely planform and flight stability.

• Examination of  museum specimens (including the use of  CT scanning) to build a structural 

definition of  the wing bones.

• Development of  a computer model to analyse the wing spar structure.

• Estimation of  wing spar deflection, stresses and structural factors of  safety for different loading 

cases.

• Investigation of  the interaction between the wing spar structure and the membrane in order to 

infer membrane properties.

• Extrapolation of  the results to investigate the upper limits to size.
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The first steps in the research were to fill two key gaps: 

• to quantify the performance of  candidate 2D wing sections and 

• to obtain details of  the internal wing bone morphology in order to build a structural model. 

This is the work which constitutes the bulk of  this study and in itself  has resulted in two papers 

(Palmer 2010, Palmer & Dyke 2011) and a number of  presentations to conferences such as Flugsaurier 

(2010, 2015), IPC (2010), SVPCA (2011, 2014, 2015) and SVP (2014). 

Chapter 2 describes the design of  the wing sections and the wind tunnel testing and Chapter 3 the 

application of  these results to the prediction of  the flight performance, as quantified by glide polars. 

These results was published in the literature in Palmer (2010). Chapter 4 describes the construction of  the 

wing spar structural model and Chapters 5 and 6 the effect of  dorsoventral and anteroposterior loading 

respectively, with the implications for the wing membrane properties. Chapter 7 draws on the foregoing 

results to establish constraints on the morphology of  pterosaur wings (published in Palmer & Dyke 2011). 

Lastly, Chapter 8 uses the data obtained as a baseline from which to project the possible limits to size of  

giant pterosaurs, presented at SVP in 2014 and Flugsaurier 2015.
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Chapter Two

Wing Airfoil sections

2.1 The pterosaur wing
The pterosaur wing is unique in many ways and there are no direct analogues in mechanical 

aerodynamics, the closest being the mainsails of  sailboats. However, because the vast majority of  sailboats 

are required to operate with the wind incident on either side of  the sail, the sections comprise a flexible 

sail attached to the centre of  a symmetrical mast. In contrast, the wing section of  a gliding pterosaur can 

be asymmetrical since the main lift force only acts in one direction (Figure 2.1). 

Determining the relative positions of  the bones and wing membrane from the fossil record is 

difficult due to the limited number of  specimens with soft tissue preservation and the problems of  

interpretation in three dimensions. Padian & Rayner (1993:132) noted that “This topic is one of  the most 

important aspects of  the mechanical problem of  reconstructing the pterosaur wing, yet so far as we can tell no previous author 

has described or attempted to reconstruct the attachment of  the patagium onto the bones of  the skeleton.” In fact, Frey & 

Reiss (1981) included a sketch that suggested that the propatagium and the patagium attached midway 

between the dorsal and ventral sides of  the wing bones (which is analogous to the yacht mast geometry). 

Padian & Rayner (1993) concluded, without explanation that “.... it is apparent that the patagium originated from 

the dorsal side of  the [wing] spar.” (Padian & Rayner 1993:158), thus resulting in an asymmetric airfoil section 

(Figure 2.2). This section geometry was adopted by Wilkinson et al. (2006), but again without explanation 

or justification.

Lastly, to the extent that contemporary bats might inform the reconstruction of  pterosaur wings, 

Norberg (1972) indicated that the bones in bat wings are positioned as in the Frey & Reiss (1981) 

reconstruction, but the bat wing bones are much smaller in diameter in relation to the width of  the wing 

than in pterosaurs (Figure 2.3).

2.2 Analogues from other disciplines
While results from theoretical analysis and experimental tests on airplane airfoils and sail boat sails 

are not directly applicable to the aerodynamics of  a pterosaur wing, they can provide some general 

insights. Compared to most airplanes, the Reynolds number of  pterosaur flight (around 2 x 105 - see 

below) is very low and much closer to that of  sailing boats. It is known that as Reynolds number reduces, 

the relative performance of  thick and thin airfoils changes. Marchaj (1979:302-326) presented results that 

compared a curved plate airfoil with more conventional thick airfoils (Figure 2.4) and showed that at 
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Reynolds number below 1 x 105 the thin, curved plate airfoil has lower profile drag and was capable of  

generating a significantly higher maximum lift coefficient than thicker sections. As Reynolds number 

increases above 1 x 105, thicker airfoils slowly become superior and when Reynolds numbers reach those 

applicable to aircraft (>106), thicker airfoils show overwhelming superiority, hence their almost universal 

use in aircraft. In the range of  Reynolds numbers over which pterosaurs operate (200,000 to 500,000) the 

differences between thick and thin airfoils are small, so as Marchaj’s (1979) results described above show, 

pterosaurs would not have been fundamentally disadvantaged by having a single skinned membrane.

The profile drag (the pressure and frictional drag of  a two-dimensional section) of  a thin airfoil is 

primarily a function of  the curvature or camber of  the section (Shyy et al. 2008:46). Conventionally, the 

camber is defined as the ratio of  the depth of  the curvature (f) to the local chord (c) of  the wing, and often 

given as a percentage. For a flat plate (zero camber) section, the profile drag coefficient is around 0.02 

(Marchaj 1979:320), becoming 0.05 at 15% camber and 0.10 at 18% (Milgram 1974). Low camber 

sections show a marked minimum in the curve of  profile drag coefficient against lift coefficient, but as 

camber increases the profile drag becomes nearly constant with lift up until the point where stall starts, at 

which point it starts to increase rapidly. Consequently, as camber increases, so too does the lift coefficient 

associated with maximum lift:drag ratio (Milgram 1974).

As discussed above, the other effect of  increasing camber is an increase in maximum lift coefficient 

(Clmax). For a flat plate the maximum lift coefficient is less than 1.0, but this increases in an approximately 

linear relationship to 2.5 at 18% (Marchaj 1996:319 (Figure 2.5) and Milgram 1974). Beyond 18% 

camber there is evidence that the rate of  increase declines and that such high absolute values may not 

apply to sail sections (Collie et al. 2004). Indeed, the precise value of  Clmax achieved “can be very sensitive to the 

test conditions.” (Hoerner 1985: 4-11 et seq.) and will also depend upon the surface roughness of  the wing 

section, the Reynolds number of  the tests and, to a much more limited extent, the actual shape of  the 

camber line (Hoerner 1985:4-12, Marchaj 1996:144, Shyy et al. 2008:48). However, a figure approaching 

2.5 appears achievable with camber alone.

A pterosaur wing, like the mainsail of  a yacht, is supported by a rigid structure - the wing bones in 

the pterosaur, the mast in a yacht. As noted above, most mast/sail combinations comprise a fixed mast to 

which a membrane sail is attached, generally such that the mast is symmetrically positioned across the 

leading edge of  the membrane. This is the main reason why most data for mast/sail combinations has 

limited usefulness in helping us to understand the effects of  variation in the relative positions of  the rigid 

and flexible parts of  the pterosaur wing. Marchaj (1996:103) presents the most useful data in this respect. 

It shows that attaching a mast (with diameter = 7.5% of  the width of  the sail) symmetrically to the 

leading edge of  a cambered airfoil reduces the maximum lift coefficient by 15% and doubles the profile 

drag. A 12.5% mast has a much greater adverse effect upon maximum lift and a further increase in profile 

drag (Figure 1.17). However, if  this larger diameter mast is offset towards the high pressure side of  the 
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airfoil (the ventral side of  a pterosaur wing), the profile drag is unaffected, but the maximum lift 

coefficient improves greatly, to become similar to that of  the smaller diameter mast.

Chaplin et al. (2005) used Computational Fluid Dynamics (CFD) techniques to examine the effect 

of  the presence of  a circular mast (5% of  sail width) on the anterior margin of  a cambered sail. Like 

earlier workers, they found a substantial increase in drag (up to 100%) which had the effect of  reducing 

the maximum L:D ratio (L/Dmax) from 70 to 25! They also examined the effect of  varying sail camber for 

the sail and mast combination and found an optimum camber (based on L/Dmax) of  12%. This optimum 

results in a lift coefficient of  1.3 at L/Dmax.

Maughmer (1979) reported the results of  wind tunnel tests on a flexible wing concept, the Princeton 

Wing (Figure 2.6). The Reynolds number of  the tests (around 1x106) were somewhat higher than the 

range applicable to pterosaurs so results need to be interpreted with caution, but they serve to confirm the 

superiority of  the asymmetric spar/membrane geometry. Typically Maughmer’s (1979) results show a 

profile drag coefficient of  0.08 for an asymmetric geometry as compared to 0.06 for a symmetrical one, 

but a much higher Clmax and consequently a 60% increase in maximum lift:drag ratio. These conclusions 

are further supported by results of  comparative tests of  different mast/sail geometries in Marchaj 

(1979:338) which show superior L/D for a configuration with the mast offset to the windward (ventral) 

side of  the sail.

More recently Paton & Morvan (2007) used Reynolds Averaged Navier Stokes (RANS) based CFD 

to analyse different mast/sail geometries. Their results are restricted to only one angle of  attack, but 

suggest that an asymmetric section can give a significant improvement (50% or more) in L/D ratio and 

that the details of  the spar section can have significant (though lesser) influences. They propose that the 

main mechanism by which these gains are realised is the reduction in lee side (dorsal) flow separation.

The variation in drag for different configurations is primarily the result of  different degrees of  flow 

separation as separated flow is a major source of  airfoil profile drag (Eppler 1979:132) and becomes an 

increasingly important consideration as Reynolds number is reduced and laminar flow starts to 

predominate (Russell 1979, Eppler 1979, Katz & Plotkin 2001:497, Shyy et al. 2008:31). At low angles of  

attack, thin, cambered sections experience laminar separation on the lower (ventral) surface and this 

switches to upper surface separation as the angle of  attack increases. Depending on the pressure 

distribution, Reynolds number and surface roughness, the separated flow may or may not re-attach to 

form a separation ‘bubble’ (Mueller & Batill 1980, Lissaman 1983). The presence of  a mast or wing bone 

on the anterior edge of  a membrane airfoil greatly increases the drag due to the flow separation around 

the relatively ‘bluff ’ mast/wing bone. Typical separation regions are shown in Fig 2.7 (from Chaplin et al. 

2005) and for a detailed exploration of  the phenomena, see Wilkinson (1984).

At higher Reynolds numbers (around 1x106 and above), surface roughness on an airfoil has the 

effect of  increasing drag and reducing Clmax as roughness increases (Hoerner 1985:4-20). However, at 

lower Reynolds numbers, the effect is different in that surface roughness can have the effect of  triggering 
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transition from laminar to turbulent flow and thus reducing the adverse effects of  laminar separation and 

resulting in an overall improvement in aerodynamic efficiency (Lissaman 1983). Consequently, the 

inevitable presence of  aerodynamically significant surface roughness on natural wing structures may not 

be a disadvantage in the Reynolds number regime where pterosaurs operate.

2.3 Experimental testing
Because data from contemporary analogues (yacht sails, “soft” aircraft wings) is not directly 

applicable to pterosaurs and Wilkinson et al.’s (2006) results contain anomalies as well as covering only a 

very restricted range of  wing geometries, it is not possible to determine from earlier work the effect of  

varying the location of  the wing bone relative to the lifting surface nor the effects of  different wing bone 

sections or sizes relative to the local chord of  the wing. In the absence of  such 2D wing section data it is 

not possible to reliably predict the aerodynamics of  the complete wing and thus the flight performance of  

the animal. 

To address this deficit, two-dimensional models of  a range of  wing sections were made and tested 

in a low speed wind tunnel and the results used to produce comparative flight performance curves for 

large, generic ornithocheiridomorph (Pteranodontidae, Istiodactylidae, Anhangueridae etc) pterosaurs. The 

models were made intentionally generic so that the results would be widely applicable and not species 

specific. Rigid models were used to investigate the effects of  different wing bone cross sections and 

surrounding soft tissue morphology and flexible membrane models were made to investigate the 

differences between rigid and flexible wing membranes appropriate to the range of  pterosaur taxa listed 

above.

Wing sections were also modelled using the XFOIL computer program (http://web.mit.edu/drela/

Public/web/xfoil/), a code developed specifically for the viscous flow analysis of  low Reynolds number, 

2D isolated airfoils. 

2.3.1 Wind tunnel testing
The use of  a wind tunnel for testing the properties of  airfoils was first recorded by Horatio Phillips 

in the UK in 1884 and used extensively by the Wright brothers in their development of  the first powered 

airplane (Anderson 2007:300). Since these early days, an extremely extensive body of  work has been 

created, covering all wing types from the smallest insects to hypersonic spacecraft. There must be many, 

many thousands of  references resulting from these studies (See Anderson 2007 and Hoerner 1965 & 1985 

for examples). The fundamental properties of  an airfoil are quantified by means of  two dimensional tests - 

in which a prismatic wing section is placed across the full width of  the wind tunnel. In this way, end effects 

are avoided and the characteristics in two dimensional flow are measured.

The conventional procedure is to measure the forces generated by the models and to present them 

in non-dimensional forms for ease of  comparison. The most important forces are lift and drag, non-
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dimensionalised to lift and drag coefficients, but the moments of  these forces are also often measured as 

they have important implications for flight stability.

2.3.2 The wing sections
Pterosaur wings comprised two distinct regions – the proximal region where a propatagium was 

present and the distal region where it was absent (Wellnhofer 1991a, Padian & Rayner 1993, Bennett 

2000). The distal region of  the main wing membrane, the cheiropatagium, was supported by wing bones 

situated along the anterior margin whereas in the proximal region the wing bones lay within the margins 

of  the membrane, with the propatagium extending anteriorly and the cheiropatagium extending 

posteriorly. (Figure 1.6, 1.7 and 1.12)

Test sections were designed to be representative of  the wing of  a large pterosaur – nominally 2.88m 

in length (5.8m wingspan in total) and with a geometry based upon Bennett (2001), Wilkinson (2008) and 

Prondavai & Hone (2008) - see Figure 2.8. The wing bone cross section morphology was based upon 

measurements taken from SMNK 1133 PAL, the Cambridge Greensand specimens at NHMUK, 

Cambridge and York and illustrations contained in Wellnhofer (1985) (see Chapter 4 for more details of  

the specimens consulted). While the cross sections of  the bones can be reliably measured from these 

sources, the extent of  the wing membranes is more speculative, in particular its width. Accordingly, 

models were made that represented two different ratios of  wing bone diameter to membrane width. This 

also reflected the variation of  bone cross section between diaphysis and epiphysis. 

The wing membrane in the rigid models was modelled by thin curved plates made from epoxy 

resin/carbon fibre moulded composite (Figure 2.9 and Annex 1). Since the actual camber of  the 

pterosaur wing membranes cannot be known with any precision, models were made with three different 

values (nominally 10%, 12% and 15%) to provide a range of  results. The model of  the proximal part of  

the wing was given greater camber since depression of  the legs would have been capable of  inducing deep 

camber in that part of  the membrane (assuming the current view that the wing membrane is attached to 

the legs from hip to ankle (Elgin et al. 2009)). More distally this effect would weaken and the membrane 

tensions are likely to have reduced the camber, so less camber was incorporated in the models of  the distal 

sections.

The models represented wing sections in the proximal, mid-span and distal parts of  the wing at four 

locations, A, B, C and D shown in Figure 2.10. The two proximal sections (A and B) modelled the 

propatagium, humerus or radius/ulna and cheiropatagium, the mid-length section (C) the 

cheiropatagium and first wing phalanx and the distal section (D) the cheiropatagium and second wing 

phalanx. The wing bone sections used are shown in Figure 2.11.

A model incorporating a flexible membrane was also made (Figure 2.12). The membrane was 190 

mm wide when stretched flat and attached to a circular section carbon fibre tube of  13 mm diameter, the 

mean depth of  the two wing bone sections used on the rigid models. The membrane was made from latex 



20

rubber, reinforced in the mediolateral direction with thin cotton fibres to represent the aktinofibrils. The 

membrane properties were scaled to be equivalent to 2mm thick skin with properties the same as those 

reported for the skin of  bat wings (Swartz et al. 1996).

The posterior edge of  the membrane was held in place by a 3mm diameter carbon fibre rod that 

could be moved in the anteroposterior direction so as to change the slackness in the membrane and thus 

its camber. Three locations were tested to give a wide range of  different membrane curvatures, from 

which intermediate values could be interpolated. The upper limit was set beyond values generally found 

in yacht sails and is likely to be a form that experiences substantial regions of  separated flow and 

consequently with drag and low aerodynamic efficiency. The complete range of  bone sections and wing 

sections evaluated are shown in Figure 2.13. In the text that follows they are referred to by the relevant 

letters and numbers associated with them on that Figure, so the 160mm chord curved section with no 

attached wing bones is A1 for example.

The models were tested in a small wind tunnel situated in the Department of  Engineering at 

University College Dublin. The Plint TE 44 Subsonic is an open jet wind tunnel with a working cross 

section of  457 mm x 457 mm. The mean turbulence level is less than 0.7% r.m.s. and velocity variation 

less than +/- 1.0% outside the boundary layer. Forces were measured with a Plint three component 

balance. Lift and drag forces were measured and converted to non-dimensional forms for ease of  

comparison with results from other sources. 

2.3.3 Flight Speed and Reynolds Number
The full scale width of  the wing at locations A to D along the wing was assumed to be 0.7, 0.5, 0.4 

and 0.3 m respectively. In order to achieve fluid dynamic similarity, it is necessary to conduct tests at a 

Reynolds numbers similar to that of  the full sized wings, which in turn depend upon the flight speed 

assumed. The flight speed of  any flying body depends upon three main parameters:

the total weight, 

the lifting surface (wing) area

the airfoil lift coefficient. 

(It also depends on the air density, which varies slightly with temperature and pressure, but this is a 

second order effect.) 

To a close approximation, the lift is the same as the weight.

The weight of  pterosaurs is a much debated topic as noted earlier and as reviewed in Palmer & 

Dyke (2009). The published estimates in the literature were used to establish likely upper and lower limits, 

which give a weight range of  13.9kg to 32kg (Palmer & Dyke 2009) for a 5.8m wingspan ornithocheirid. 

The wing area is another parameter that cannot be determined with precision. An estimate based on the 

reconstruction shown in Figure 2.10 gives a wing area of  2.50 square metres, a little higher than the value 
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of  2.29m2 used by Palmer & Dyke (2009). Witton (2008) gives a wing area of  1.99m2 for a 5.96m 

wingspan Pteranodon, which if  scaled isometrically results in a wing area of  1.88m2 for a 5.8m wingspan 

individual. These estimates suggest a range of  1.9 to 2.5m2. Lastly, an estimate of  the overall lift 

coefficient of  the wing is required. Bramwell &Whitfield (1974) proposed a value of  1.2, Brower (1983) 

predicted values in the range of  1.2 to 1.4 for optimum soaring performance. The results reported in later 

sections of  this paper indicate that the optimum lift coefficient depends upon the wing section 

configuration, but that in most cases it falls in the range between 1.2 and 1.6, which encompasses the 

estimates made by others. These values are considerably higher than values estimated for birds 

(Pennycuick 2008 for example) and those applicable to man-made gliders. The difference is a reflection of  

the characteristics of  high camber wing sections, wherein the best lift:drag ratio occurs at a relatively high 

value of  lift coefficient. The range of  cruising flight speed that results from these estimated ranges of  

weight, wing area and lift coefficient is 7.5 to 15m/s.

Using standard values of  air density and viscosity at 20℃, the Reynolds number thus ranges from 

1.5 x 105 for the narrowest section at the slowest speed, to 6.9 x 105 for the widest section at the highest 

speed. While the whole speed range is of  potential interest, it was not practical due to limitations on the 

experimental time to measure the performance of  each wing section over this entire Reynolds number 

range. It was therefore decided to bias the experimental range towards the low speed end of  the range, 

since performance at low Reynolds numbers is inherently more variable due to laminar separation effects 

and because the low speed flight characteristics of  the animals are of  particular interest if  estimates of  

minimum sink speeds and landing speeds, two important parameters for large, soaring animals, are 

required.

2.3.4 Validation of Test Procedures and Models
The rigid models were first tested without wing bone sections over a range of  Reynolds numbers to 

ascertain the sensitivity of  the results to this parameter. At Re=1.2 x 105 the maximum lift coefficients 

were reduced by approximately 6% when compared to results between Re = 1.6 x 105 and 2.0 x 105, but 

there was little difference in the results at lower lift coefficients. Within the higher range of  Re values, any 

differences between the results were almost indistinguishable over the complete experimental range. All 

the remaining tests were therefore conducted at Reynolds numbers of  2.0 x 105 as this gave larger 

absolute forces and thus minimised the signal to noise errors in the instrumentation. Due to excessive 

distortions in the flexible membranes, it was only possible to achieve a Reynolds number of  1.2 x 105 for 

those tests.

The results of  the cambered plate models were compared with those published by other workers to 

validate the model making quality and the performance of  the wind tunnel. A comparison of  the 14.6% 

camber ratio test with the most comprehensive comparative data available (Milgram 1971) is shown in 

Figure 2.14. While the correspondence is not perfect, the overall shape of  the results is very similar and 
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follows the pattern of  Milgram’s (1971) results, giving confidence that the results being reported here are 

reliable. The detailed differences are most likely due to differences in the section shapes and the 

characteristics of  the air flow in the wind tunnel but are unlikely to affect the validity of  comparisons 

between results obtained the same test facility (Hoerner 1985:4-7). To quote the American home of  

aeronautical testing: (NACA 1921:259) “It is a well known fact that the results obtained in different laboratories, 

because of  their individual methods of  testing, are not strictly comparable even if  proper scale corrections for size of  model 

and speed of  test are applied. It is, therefore, unwise to compare too closely the coefficients of  two wing sections tested in 

different laboratories. Tests of  different wind sections from the same source, however, may be relied on to give true relative 

values.”

2.4 Results

2.4.1 Proximal sections
The 14.6% camber wing section (A1) was tested with a notional proximal wing bone situated at 

20% and 40% of  the wing chord from the anterior margin (A2, A3 and A4, A5 respectively). It was tested 

in a faired (A2 and A4) and unfaired geometry (A3 and A5). The fairing was applied with plasticine and 

was shaped by eye. No doubt other shapes are possible, but these must be the subject of  further studies. 

Figure 2.15 shows the polar curves (Cl vs Cd) for these sections. The section without any attached 

bone demonstrates a very similar shape to that reported by Milgram (1971), with a minimum profile drag 

coefficient of  0.1, a best L/D of  18 at a Cl of  1.8 and a maximum lift coefficient in excess of  2.0.

The addition of  the wing bone (faired or unfaired) reduced the maximum Cl that was achieved but 

did not increase the minimum drag (although this was achieved at much lower value of  lift coefficient.) 

The overall effect was a reduction in the best L/D ratio and a small reduction in the Clmax.

The more anterior location of  the wing bone gave the greatest reduction in performance and in 

both cases the effect of  the fairing was small. The location of  the bone was the more powerful effect. At 

the 20% location, the best L/D ratio was 9, increasing to 12 for the 40% location. Both locations gave a 

Clmax of  at least 1.8 (the tests had to be curtailed due to excessive vibration from the model, due to 

extensive separated flow.)

In summary, the proximal wing bone positioned at 40% of  wing chord (faired or unfaired) reduced 

maximum lift but did not increase minimum drag, resulting in only small reduction in aerodynamic 

efficiency. A more anterior (20% chord) location for this wing bone resulted in a greater reduction in 

performance. In both cases the effect of  the fairing was small.

2.4.2 Wing Phalanx Sections
The first wing phalanx (WP1) was modelled as an oval section (C3, C4, D3, D4, E2), with (C4 and 

D4) and without the soft tissue ‘fairing’ on its posterior face that has been proposed by other workers as 
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necessary to reduce aerodynamic drag (Padian & Rayner 1993). The second wing phalanx (WP2) was 

subtriangular in section, with slight concavity on the posterior face (C5, C6, D2 and E3). Both these wing 

sections were attached to  two wing sections, one with 11.6% camber, the other 8.7%. (E1 and D1) 

Figure 2.16 shows the results obtained with the 11.6% camber section. With no bone attached, it 

had a minimum drag coefficient of  0.05 at Cl=1.5, and a maximum L/D of  33. Attaching the wing bones 

increased the minimum drag substantially in all cases and moved the minimum to a lower value of  Cl - 

around 0.8, and increased the Clmax (with one exception - see below). 

The small WP1 section was tested on the ventral side of  the wing section, faired and unfaired. The 

shape of  the fairing was based on an illustration in Padian & Rayner (1993). The two results were almost 

indistinguishable, both giving Clmax = 1.9 and L/D = 15. While both the limited morphological evidence 

from the palaeontological literature (Padian & Rayner 1993) and the results from the aerodynamic 

literature discussed above suggest that a section with the wing bone offset in the ventral direction is more 

likely, one test was conducted with the WP1 section fitted on the dorsal surface of  the wing section. It gave 

a slightly higher minimum drag and lower L/D than on the ventral side, as well as a substantially reduced 

maximum lift coefficient. 

The smaller WP2 section had a slightly higher minimum drag than the WP1 section, the same 

maximum L/D ratio (15) and gave a small increase in Clmax (2.0 as compared to 1.9). The larger WP2 

section increased the drag substantially, but also resulted in an increase in Clmax (to 2.25). The best L/D for 

this geometry was 10.

The 9.7% camber section alone (Figure 2.17) had a slightly lower minimum drag than the 11.6% 

section, but because this occurred at a lower value of  Cl, the best L/D for this section was actually slightly 

lower (28.4). Attaching the large WP1 section increased the minimum drag as before (to 0.07) and again it 

moved to a lower Cl (0.5) than for the section alone. In this case, adding the fairing increased the 

minimum drag to 0.09 but gave very similar performance at high Cl. Consequently the maximum Cl of  

the two sections were the same (1.85) and the best L/D very similar (13.5 with fairing, 14.5 without). The 

large WP2 section increased the Clmax to 2.15, had similar minimum drag but more drag at intermediary 

values of  lift coefficient, resulting a reduced L/D max of  12.0.

As discussed above and illustrated in Figure 1.16, the parameters that are arguably most important 

in assessing the merit order of  different wing sections are the maximum Cl that can be achieved (which 

determines the minimum flight speed), the maximum Cl/Cd ratio (which determines the aerodynamic 

efficiency) and the lift coefficient at which this occurs, which is an indication of  cruise speed. These 

parameters are summarised in Figure 2.18.

2.4.3 Flexible sections
At low lift coefficients the taut and low camber section (F1 and F2) and gave similar drag to a 

comparable rigid section (Cd = 0.1), but closer to stall the drag became higher, thus reducing the 
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maximum L/D (12.5 for 0% camber, 9 with 10% camber) (Figure 2.19). However, a more notable result 

was that the maximum lift coefficient was greatly increased. In the cases of  the high slack configurations 

the maximum lift coefficient reached 2.7, almost 25% greater than the highest result for any of  the rigid 

sections (compare results in Figures 2.15 and 2.18). For these flexible sections, the maximum lift:drag ratio 

of  6 was achieved at a lift coefficient of  more than 2.0. The exceptionally high maximum lift coefficient 

of  these flexible sections was coupled with a gentle stall characteristic, as for the rigid sections. The key 

parameters are summarised in Figure 2.20.

2.4.4 XFOIL simulations and wing bone fairing
Attempts were made to apply the XFOIL low Reynolds number airfoil analysis code to the sections 

but panel codes of  this nature have a limited capability to accurately model the effects of  (as distinct from 

the occurrence of) large areas of  separated flow and consequently underestimate the drag (Paton & 

Morvan 2007). The analysis was consequently of  no use for producing reliable, absolute values for lift and 

drag of  pterosaur type wing sections. XFOIL does however predict the shape of  the boundary layer 

(Figure 2.21) and the location and extent of  separation, which is useful in understanding the potential 

effect of  different amounts of  fairing around the wing bones. Figure 2.22 shows a summary of  a typical 

set of  XFOIL results for a WP1 wing bone section. With very little fairing, the program shows a region of  

separated flow posterior to the wing bone. As the extent of  the fairing is increased the extent of  the 

separated flow region reduces. The final section shows very little separation and represents the extent of  

fairing likely to be required to reduce drag to a minimum.

This approach was used to design a fairing for the medium camber section and resulted in a large 

(35%) reduction in minimum drag from 0.083 to 0.055 (Figure 2.23), but a more modest improvement in 

the aerodynamic efficiency, from a L/D ratio of  16 up to 22 since the maximum lift coefficient achieved 

was unchanged.

Results from wind tunnel tests of  optimised low Re wing sections (S1223 and UF) (Shyy et al. 2008) 

(Figure 2.24) shed additional light on the section shapes required for minimum drag. The main difference 

between the two sections is their thickness and the thinner section had a higher peak L/D, but this was 

only sustained over a restricted range of  angle of  attack. The thicker (S1223) section had a lower 

maximum L/D but sustained good performance over a wider range of  conditions. Both sections have 

enhanced trailing edge camber, something that is difficult to envisage on a pterosaur wing membrane. For 

comparative purposes, data for a thin plate section (Gottingen 417a from Schmitz 1952) is also included 

and demonstrates a lower peak L/D and a narrow performance range. The Gottingen 417a section was 

the one used by Bramwell & Whitfield (1974) and Brower (1983).

2.5 Discussion
In summary, tests with the WP1 and WP2 phalanges showed that: 
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• With the sections on the ventral side, drag increased substantially (as compared to a cambered 

section alone), with little difference between the two shapes. There was almost no effect on the 

maximum lift (in fact a small increase with the WP2 phalanx).

• A phalanx located on the dorsal side of  the wing reduced the section performance substantially, 

increasing drag and decreasing the maximum lift coefficient. Positioning the bone on the dorsal 

side greatly reduced the section performance and similar results are apparent from sail/mast 

tests. These results strongly support the ventral positioning proposed by Padian & Rayner (1993).

• The larger the bone section relative to the width of  the wing section, the greater the drag.

• Fairing the phalanx sections to the extent previously suggested (Padian & Rayner 1993) did not 

reduce the drag or influence the maximum lift.

• A more extensive fairing, designed to minimise separation, reduced the drag by 35% with no 

change in maximum lift.

• The flexible section had similar minimum drag but greatly increased maximum lift (>25%) (at 

the cost of  high drag).

• The maximum lift coefficients produced by the rigid sections approached 2.0 and were higher 

still for the flexible section (approaching 2.7), values considerably in excess of  those reported for 

birds (Pennycuick 1968, 1983, Tucker and Heine 1990).

More generally, the results show that the airfoil section efficiency is sensitive to the wing bone 

diameter (strictly, the ratio of  local diameter to local wing membrane width) and is maximised when this 

ratio is minimised. The humerus and radius/ulna are the largest diameter bones in the wing and are 

surrounded by soft tissue, further increasing their size. Thus the proximal regions of  the wing are likely to 

suffer the greatest loss of  performance due to the presence of  the wing bones. However, this is the region 

where the propatagium is present, resulting in a section that does not have a bluff  anterior edge to trigger 

separation and high drag. Indeed, the test results showed that a wide propatagium resulted in a section 

with less aerodynamic drag than a section with a narrow propatagium, pointing to an advantage from 

positioning the wing bones on the ventral side of  the wing membrane and posterior to the leading edge. 

Thus, the propatagium acted more as a drag reduction device than as a means of  lift enhancement, contra 

Wilkinson et al. 2006. 

When soft tissue around the wing bone of  this configuration was modelled, the section 

characteristics changed little, indicating that in the proximal regions of  the wing the aerodynamic 

performance is insensitive to assumptions about the extent and shape of  the soft tissue surrounding the 

wing bones. This is most probably due to the bone being in the separation ‘shadow’ of  the leading edge at 

low angles of  attack, thus having no effect on the minimum drag, but then causing new regions of  

separation as it is exposed to the incident flow at higher angles of  attack. This would reduce the positive 
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pressure on the ventral side of  the section and thus reduce the maximum circulation and Clmax that could 

be achieved.

Wing bone sections situated on the ventral side of  the membrane gave maximum lift coefficients 

that were comparable to or greater than the sections without a wing bone, indicating that the presence of  

the bones on the anterior edge had no detrimental effect on the lifting capability of  the wing, although 

they did result in a substantial increase in drag.

There was little difference between the two different wing bone cross sections tested: the only 

parameter that proved significant was the wing bone depth. As this increased relative to the section width, 

the drag increased, L/D decreased and Clmax increased, so moving the most efficient operating condition 

to a higher value of  Cl.

XFOIL modelling and reference to optimised low Re airfoils indicates that substantial drag 

reductions could result from extensive fairing behind the wing bones. However, this would imply very 

extensive soft tissue which, unless it was heavily pneumatised, would have large weight penalties. 

Taken together, it appears from these results that in order to approach the low values of  minimum 

drag that are possible with optimised airfoils, a considerable extent of  fairing behind the wing bones will 

be required and that L/D is maximised by having a thin section, which implies the smallest possible bone 

diameter.

For the flexible wing sections, the performance at low camber was similar to that of  the rigid 

sections, but as the camber (and flexibility due to slackness) increased the Clmax became very high and the 

best lift:drag ratio was achieved at a lift coefficient of  more than 2.0.

2.6 Summary
In summary, these tests have allowed the two-dimensional characteristics of  possible pterosaur wing 

sections to be quantified for the first time. They reveal sections that were well adapted to low speed flight 

and controlled deceleration for low speed landing. Since the bones of  pterosaurs are very thin walled and 

consequently very susceptible to impact damage, such a flight capability could have made an important 

contribution to avoiding injury.
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Chapter Three

Flight capabilities

3.1 Modelling a flying animal
As outlined earlier, the standard aeronautical engineering approach to determining the flight 

performance of  an aeroplane is to start with the 2D wing section data and to assemble this into the 

complete, three-dimensional aeroplane (or flying animal). The fundamental theory underlying this 

approach has long been known (Lanchester 1907, Prandtl 1921b) and relies on a body of  analysis known 

as lifting line and lifting surface theories. (See Katz & Plotkin 2001, Anderson 2005 and more accessibly 

Marchaj 1979.) These approaches enable the calculation of  the aerodynamic performance of  finite wings, 

taking account of  the induced flow patterns, energy losses due to the formation of  tip vortices and 

variations in wing section and section orientation (twist) along the span. This analysis can also be used to 

understand the pitching moment characteristics of  the wing and thus inform and understand the flight 

stability about the transverse axis. (Figure 3.1)

At the simplest level, the effect of  moving from a 2D (effectively infinite) analysis to a finite one in 

three dimensions is the introduction of  the tip effects, wherein energy is lost due to the formation of  wing 

tip vortices, an effect captured by the concept of  induce drag.

The well established formula for induced drag (Anderson 2005:395) is 

(See Glossary for more details). From this it is apparent that induced drag depends on the square of  

lift coefficient (and the inverse square of  flight speed), so it increases rapidly as speed decreases. Induced 

drag also depends on the inverse of  Aspect Ratio (AR), (a measure of  the slenderness of  a wing). Long 

thin wings have higher aspect ratio and consequently less induced drag than short, wider wings, which 

explains why gliders are the shape that they are. A price paid is a loss of  manoeuvrability. The final factor 

is ‘e’, a semi-empirical correction that varies with the lift distribution along the wing. Pandtl (1922) showed 

that the optimum lift distribution (the one giving the lowest induced drag) for a planar wing is elliptical, 

the shape of  the iconic Spitfire fighter wing of  WWII. Any deviations from that shape generally result in 

an increase in induced drag (Figure 3.2), represented by e in the equation above. Typically the value of  ‘e’ 

lies within the range between 0.8 and 1.0. 
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The factor e can be estimated using lifting line and lifting surface theory, and over the years 

numerous computer codes have been developed to undertake this analysis (the so called “vortex lattice” 

and the more complex “panel codes” collectively referred to as panel codes in the what follows) which are 

the inviscid (meaning that the solutions take no account of  viscous  and thus boundary layer effects) 

forerunners of  the more recent viscous flow computational fluid dynamics (CFD) codes, (which are based 

on solutions to the fundamental Navier Stokes equations of  fluid flows and incorporate the effects of  

friction). While these new codes offer the promise of  greater accuracy, versatility and the representation 

of  viscous flow phenomena, they are computationally intensive and panel codes are to this day the 

workhorses of  aircraft design (Woodward 1968, Erickson 1990). Panel codes are by their nature limited to 

an inviscid analysis, so are unreliable in cases where separated flow is present (such as stall) but for cruising 

flight they can give very reliable results. The vortex lattice method of  3-dimensional lifting surface 

aerodynamic analysis (technically a discrete co-location finite-difference method for obtaining numerical 

solutions to the loading integral equation relating normal velocity to wing loading (DeYoung 1976)) has 

been in use since the 1940s (Falkner 1946). Typical modern implementations are Tornado (http://

www.redhammer.se/tornado/index.html), XFLR5 (http://www.xflr5.com/xflr5.htm) and AVL (http://

web.mit.edu/drela/Public/web/avl/). I selected XFLR5 for this study for a number of  reasons:

• It readily runs on a Mac computer using an accessible graphical interface, so the learning curve 

is shallow.

• It is free and open source. 

• XFLR5 has been shown to provide similar results to other comparable codes and wind tunnel 

results (Deperrois 2011).

• It incorporates XFOIL, Mark Drela’s open source 2-dimensional airfoil design code, a very 

powerful low Reynolds number 2D panel code that can take account of  boundary layer (but not 

full separation) effects (http://web.mit.edu/drela/Public/web/xfoil/). This allowed a variety of  

airfoil sections to be modelled. XFOIL has been used in a very large number of  airfoil studies 

and is known to provide reliable results over normal flight ranges (e.g. Bertagnolio et al. 2001, 

Windte et al. 2006, Kay 2010).

• It was designed for model aircraft, so is tailored to the Reynolds number range of  relevance to 

pterosaur flight (105 to 106).

• Validation work for the analyses that follow was conducted on well-known configurations 

including uniformly tapered wings and elliptical wings and yielded correct results.

3.2 Weight and Wing area
In addition to the aerodynamic characteristics of  the wing sections, the calculation of  flight 

performance requires knowledge of  the total weight and the area and shape of  the lifting surface(s). As 

http://www.redhammer.se/tornado/index.html
http://www.redhammer.se/tornado/index.html
http://www.xflr5.com/xflr5.htm
http://web.mit.edu/drela/Public/web/avl/
http://web.mit.edu/drela/Public/web/avl/
http://web.mit.edu/drela/Public/web/xfoil/
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discussed in the introduction section, the question of  pterosaur body mass is not resolved, but it does 

appear that most workers now more or less support the results obtained from Witton’s (2008) analysis. 

Consequently, this formulation was used to provide central values, although in some cases the effect of  

variation was also investigated. The same source was used for the wing area.

3.3 Calculation of polar curves
In order to compare and quantify the effects of  the different wing section characteristics, the 

lift:drag relationships were used to calculate the flight performance of  a notional three dimensional 

pterosaur with a wing area of  2.2m2, wingspan of  5.8m and mass ranging between 13.9kg and 32kg . The 

drag was calculated as the sum of  the section profile drag measured in the 2D tests, the parasitic drag of  

the body and the induced drag (drag due to lift). The resulting lift and drag values were then used to 

calculate a glide polar curve (the variation of  sink speed with forward speed). A generalised polar curve is 

shown in Figure 3.3, highlighting the areas of  particular interest with regards understanding animal flight 

performance. 

The parasitic drag of  the body was calculated using the methodology of  Bramwell & Whitfield 

(1974) in order that comparisons could be made with their work. The induced drag was calculated using 

the standard aerodynamic formulation described above, and for the purpose of  this initial study a 

constant value of  e=0.9 was used, applicable to a highly tapered wing (Marchaj 1979). The aspect ratio 

was calculated from AR=B2/S (where B = the total wing span and S the wing area). The polar curve was 

calculated using the identity CT=W/(0.5ρSVa
2), where CT is the resultant of  CL and CD (the wing lift and 

drag coefficients), W the weight of  the animal, ρ the mass density of  air and Va the airspeed. This is 

solved to give the airspeed vector, from which the horizontal and vertical speed components can be 

derived.

The resultant curve is an inverted U shape, and the maximum of  the curve is the point of  

minimum sink (Figure 3.3). The point where it is tangential to a line through the origin is the maximum 

aerodynamic efficiency (L/Dmax) and also the maximum range in still air. It is important to be aware of  

this distinction. At minimum sink, time in the air is maximised whereas at L/Dmax the range is maximised. 

The former matters more for behaviour that relies on soaring in rising air (Vogel 1994). Minimum sink 

can be improved in two ways: by increasing the L/Dmax and/or by reducing the flight speed by reducing 

the wing loading, since moving towards the top left of  the graph improves the sink rate without an 

increase in aerodynamic efficiency. 

One other region of  the polar curve deserves attention - the bottom left of  the graph. This is where 

speed becomes very low and flight can only be sustained by achieving high values of  lift coefficient. A 

precipitous drop in the polar curve reflects a sudden stall and most likely, loss of  control. A more rounded 

shape reflects a more gradual and controlled transition from flight to stall.



30

Figure 3.4 shows the polar curves using the WP1 wing section at two different values of  mass, 

compared with polars calculated by Bramwell &Whitfield (1974) and Brower (1983). It is immediately 

apparent that the WP1 data results in a halving of  the L/D ratio when compared to the earlier estimates, 

although at the lighter weight the flight speed is similar. At the higher weight the flight speed is increased 

as is the minimum sink rate, but the flight efficiency (L/D ratio) remains constant. These results suggest 

that the flight efficiency (as quantified by the L/D ratio) of  large pterosaurs was significantly inferior to 

previous estimates, and somewhat lower than the best extant soaring birds. (Pennycuick 1983, Tucker & 

Parrott 1970). However, due to the potentially low flight speed, the minimum sink rate was comparable to 

extant birds.

Figure 3.5 compares the results of  the wind tunnel tests at a constant mass of  23kg (mid way 

between the two extreme estimates.) For comparative purposes, results were also calculated using data 

from the 471a Göttingen section (a simple cambered plate that was used by Bramwell & Whitfield 1974) 

and the Selig S1223 section, an airfoil optimised for low Reynolds number flight. The two airfoil sections 

give similar peak efficiencies of  20:1 (similar to the values predicted by Bramwell & Whitfield 1974), but 

the S1223 section maintains good performance at higher values of  lift coefficient, so shifts the polar curve 

to the left, resulting in lower flight speeds and improved minimum sink (0.5m/sec). This result is in effect 

the upper bound for an ‘ideal’ pterosaur with an optimised airfoil section that requires assumptions of  a 

thick wing section. For comparative purposes, the results of  the camber only section are also shown. It has 

a lower flight speed than the 417a section due to its higher lift capability, but is inferior to the S1223 

section.

The results in Figure 3.6 show the effect of  camber with the WP1 wing bone. As camber increases 

the polar curve moves vertically downwards, resulting in a increased sink rate and reduced aerodynamic 

efficiency (L/D ratio.) The flight speed at minimum sink for the low camber section is 10m/s increasing to 

12m/s at maximum range (L/D max). Figure 3.7 shows that the wing bone to chord ratio is a very 

important parameter. An increase from 7.0% to 9.4% increases the minimum sink rate from 1.0 to 1.5m/

s, whereas the differences between the WP1 and WP2 profiles of  the same depth are relatively small.

The flexible sections (Figure 3.8) cover a wider range of  performance, with the lowest camber 

section giving similar performance to the rigid sections at speeds above the minimum sink condition, but a 

less precipitous increase in sink rate at low speeds (due to the ‘soft’ stall.) This effect becomes more 

marked as the camber is increased, thought it is achieved at the price of  poorer efficiency and higher sink 

rates. An envelope around these curves suggest that if  pterosaurs could control wing camber (which is 

certainly plausible in the proximal regions of  the wing where the camber is under the control of  the ankle 

attachment), then they are capable of  maintaining control at very low flight speeds.



31

3.4 Summary
The glide polars show the flight efficiency is significantly inferior to previous estimates (Bramwell & 

Whitfield 1974, Brower 1983), and somewhat lower than some extant soaring birds (Pennycuick 1971a, 

Tennekes 1997, Alexander 2003, Pennycuick 2008). However, due to the low flight speed, the minimum 

sink rate (approx 1.0m/s) was comparable to extant birds (Azuma 2006, Pennycuick 1971a, Tennekes 

1997, Alexander 2003, Pennycuick 2008) and bats (Pennycuick 1971b). As wing bone size increases 

(relative to the wing chord) the sink rate increases with little effect upon flight speed.

The flight performance was improved by extensive fairing of  the wing bones, and while the 

presence of  such a fairing is entirely speculative, it may have been provided by pneumatised tissue 

(Claessens et al. 2009). The fairing increased the aerodynamic efficiency and flight speed but had only a 

limited effect upon the minimum sink speed, the parameter that determines the loitering and thermal/

slope soaring capability.

With a flexible membrane, the flight envelope was extended to lower speeds due to the enhanced 

high lift capability and progressive stall of  these sections. Since the animals presumably had some control 

over the wing camber (Kellner et al. 2010, Bennett 2000), the envelope curve around the results with the 

flexible membrane best shows the full range of  performance. When compared to the rigid wing section 

results, the low speed flight capability is extended and combined with a softer stall, which would have 

enhanced control during landing manoeuvres when low speed, high drag and high lift are required.



32

Chapter Four

Wing spar structural model

4.1 The pterosaur wing spar
The gross morphology of  the complete wing bones of  large pterosaurs has been well described by 

Bennett (2001) and Wilkinson (2008) in particular, although other authors have provided descriptions of  

specific features or made inferences about the attachment of  soft tissue and thus the ways in which the 

wings may have been deployed (Elgin & Hone 2010). In addition to describing the morphology and 

relative sizes of  the different bones, Bennett (2001) and Wilkinson (2008) also discussed the degree of  

mobility likely to have been possible in the joints. What follows relies heavily on these sources and for the 

sake of  clarity they are not repeatedly referenced.

This literature describes what the bones looked like, how they articulated with each other and how 

they were constrained and moved by the soft tissue (muscles and tendons) attached to them. However, all 

the authors have been more or less silent on what the bone morphology may say about them as structures. 

The one point that has been repeatedly made is to the effect that the bones were thin walled “for lightness 

and strength”, but that is all and of  itself  a rather meaningless phrase. The same claim has been 

repeatedly made with respect to birds (see Dumont 2010 for a review), but as Dumont (2010) points out, 

the skeletal mass of  birds contributes the same proportion of  total mass as does the skeleton of  mammals, 

because bird bones are more dense than mammals. Dumont (2010) interprets this as a response to the 

stiffness and strength requirements of  flight. It is likely that the same evolutionary forces shaped the bones 

of  pterosaurs.

4.2 What the morphology may reveal about load bearing 

function
What follows contains a degree of  subjectivity and speculation, but is an attempt to infer the 

structural behaviour and possible loading cases by examination of  the bone morphology. I start at the 

glenoid and work towards the distal end of  the wing. While the precise shapes and sizes of  the bones vary 

from species to species (and indeed from individual to individual) the well described bones of  Pteranodon 

and Anhanguera are sufficiently typical for the purposes of  illustrating the discussion that follows (Figure 

4.1).
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4.2.1 Humerus
The humerus is the most robust wing bone in that it is not only large in diameter at mid shaft but 

has greatly expanded epiphyses and a large deltopectoral crest. In contrast to its relatively massive overall 

dimensions, the cortical bone thickness is low compared to the diameter and the bone has a dense 

network of  “foam-like” trabeculae in the epiphyseal regions (Steel 2005) and a network of  slender 

transverse trabecular struts in the mid shaft (personal obs. Figure 4.2). The cross section of  the mid shaft 

is typically close to circular and overall the bone is very stout when compared to more distal bones such as 

the ulna and wing phalanxes.

From a structural point of  view this morphology suggest a bone that is heavily loaded in 

compression - its stoutness ensuring that it does not suffer from an Euler bucking failure. The flared 

epiphyses are presumably also a response to high compression loading since, while bone may be strong in 

compression, the joints are filled with much softer cartilage so the local stresses must be reduced. As 

Rogers & LaBarbera (1992) and Reich & Gefen (2006) show, the presence of  trabeculae increases the 

energy absorption capability (strain energy) of  bones, again pointing to a bone heavily loaded in 

compression, perhaps experiencing shock loading due to landing impact.

The large deltopectoral crest that extends laterally from the proximal end of  the humerus is the 

wings’ main attachment to the flight muscles and the offset nature of  the attachment means that the 

humerus will be subject to torsional loads as well as the mediolateral pull of  the muscles (the lateral 

component of  which imparts compressive loading onto the bone). A circular cross section is the most 

efficient structural form to resists torsional loads (in the absence of  other loading - but see section 

describing the wing phalanges for more on this) and the combination of  large diameter and thin walls is 

the most weight efficient way to distribute the cortical material. The slender trabecular struts, which 

appear to be oriented at an acute angle to the long axis of  the bone may also contribute to the torsional 

stiffness of  the bone. They are most likely too slender to be effective when loaded in compression, but 

would be able to resist deformation when loaded in tension. Some would be effective in this way on the 

downstroke, others on the upstroke.

In summary, the humerus has the hallmarks of  a structure optimised to resist compressive and 

torsional loading and to be capable of  absorbing impacts.

4.2.2 Radius and Ulna
From a structural point of  view (resistance to bending or compressive loading) the radius is of  little 

consequence since its cross section dimensions are substantially less than those of  the ulna it accompanies, 

so the discussion will now focus on just the ulna. The ulna is more slender than the humerus, but also 

exhibits large differences between the epiphyseal and diaphyseal diameters (most marked at the proximal 

end) and extensive trabeculae in the epiphyseal regions, again a likely response to high compressive 
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loading on the joints. The joint facets themselves do not have any obvious locking mechanisms, so this 

invites the question of  how the joints resist the bending loads applied the lift forces in the wing. Why does 

the wing not simply fold up? The restraining mechanism must be a tendon acting across the joints.

Theses tendons/muscles are clearly illustrated by Bennett (2007 and 2008) (Figure 4.3) and imply 

that at least as far distally as the joint between the metacarpal and the first wing phalanx, the wing bones 

are constrained against dorsoventral bending by tendons/muscles acting as tension members in what in 

engineering terms is a guyed structure. It seems likely therefore that the humerus, ulna and to some extent 

the metacarpal are adapted primarily to resist compressive forces rather than bending - they are buried in 

a mass of  soft tissue which is loaded in tension and it is this that locks them in position and applies the 

compressive loads.

4.2.3 Wrist
The wrist bones are very short and in structural terms are no more than an extension of  the ulna, 

and as in the case of  the ulna they are retained in place by compression.

4.2.4 Metacarpal
The metacarpal (strictly speaking McIV as McI-III are typically much reduced or absent) exhibits 

lesser differences in diameter along its length, but as in the ulna, the proximal diaphysis is the larger of  the 

two. The most striking character of  this bone is the “pulley” shaped joint at the distal end, which joins 

with the first wing phalanx. This shape provides a degree of  locking of  the joint in the dorsoventral 

direction, but again, to be effective, the two bones have to be held against each other by the action of  a 

tendon stretched across the joint. These tendons appear to be on the anterior and posterior faces of  the 

metacarpal, so unlike the more proximal bones of  the forelimb, it is exposed to the bending loads 

produced by the wing lift forces.

The cross section of  the shaft of  the McIV shows relatively thick walls (as compared to the ulna and 

humerus) and reduced dimensions, but a marked difference between the width (anteroposterior 

dimension) and the depth (approaching a ratio of  1.0:1.5). Consequently the second moment of  area (a 

measure of  the resistance to bending loads) is at least twice as high dorsoventrally as anteroposteriorly.

4.2.5 First wing phalanx
The wing phalanges are relatively slender bones with extensive mid-shafts of  more or less constant, 

parallel cross section. The first wing phalanx is distinctive in that the proximal end is more flared than the 

others, where it locates with the “pulley” joint to the metacarpal. As before, this swelling is presumably a 

response to the high compressive forces across the joint, applied in particular by the large tendon attached 

proximally to the anterior face of  the phalanx.
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The first wing phalanx has a distinctive cross sectional shape in the shaft - somewhat sub-triangular 

and with regions of  thicker cortex in the corners of  the triangle (Figure 4.4). A shape such as this is 

optimum for resisting a combination of  bending and torsional loads (Karihaloo & Hemp 1987). The 

orientation of  the shape is such that the anteroposterior dimension is larger than the dorsoventral, 

resulting in the dorsoventral second moment of  area being around half  that in the anteroposterior 

direction (the opposite of  the case for the metacarpal).

The mid-shaft region is typically 30mm wide and 20mm deep, with a wall thickness of  1.0 to 

2.0mm. As a general statement, a thin walled structure such as this is an efficient disposition of  material to 

resist bending and torsion, since for a given mass, a large diameter, thin walled section has a higher 

second moment of  area (a measure of  bending and torsional stiffness) than one of  lesser diameter and 

increased wall thickness. However, as the section becomes increasingly thin walled, there comes a point 

where, instead of  failing in bending due to rupture of  the structural material, local bucking occurs and 

places an upper limit on the load bearing capability of  the structure. However, as will be discussed later in 

this Chapter, it appears that thin-walled as they were, pterosaur bones were unlikely to be subject to local 

bucking failure. 

4.2.6 Second and third wing phalanges
Most of  the above discussion of  WP1 applies equally to WP2 and WP3. The main difference is that 

the proximal epiphyses of  these bones are not as expanded as in WP1 and they do not show any obvious 

signs of  joint flexibility, suggesting that they were more or less locked together (Wellnhofer 1991a:46), in 

effect making the four wing phalanges into a continuous structural unit.

4.2.7 Fourth wing phalanx
The fourth wing phalanx is different from its more proximal neighbours. The cross section is more 

nearly circular and the wall thickness is much increased (as compared to the overall diameter). This is a 

structure that is not optimised for bending stiffness, but for toughness. The thick walls mean that it is 

relatively resistant to impact damage and the small diameter means that it can bend with less chance of  

failure - specifically, for any given bending deflection (radius of  curvature) the surface strain will be less 

than for a larger diameter, thinner walled alternative.

4.2.8 Overall dimensions
The external diameter of  the wing bones that comprise the wing spar decreases progressively from 

the glenoid to the distal end. This is characteristic of  a structure that is fixed at one end and primarily 

loaded in bending, practical analogues being fishing rods, flag poles or unstayed yacht masts.
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4.2.9 Discussion
From a purely structural point of  view, the pterosaur wing bone morphology implies overall 

bending loading, but locally high levels of  compressive loading.

The morphology of  the first proximal bones implies structures subject to compressive loading. All 

the bones are weight efficient (in that they are thin walled) and the wing phalanges are shaped to resist a 

combination of  bending and torsional loading. The bending stiffness of  these more distal bones is greatest 

in the anteroposterior direction, suggesting that membrane tension is more of  a structural driver than the 

loading from lift in flight.

The most distal wing phalanx is more thick walled and (possibly) flexible, suggesting that it maybe 

imparts some aeroelastic flexibility to the wing membrane whilst also resistant to impact loads, perhaps 

the result of  the wing tips touching the ground on take-off  or landing.

Against this general background the remainder of  this chapter, and the two which follow, will 

discuss the development of  a structural model of  the wing spar, the likely loading and the response of  the 

structure to this loading. 

4.3 Limits to load bearing: the bending and buckling of thin 

walled structures

4.3.1 Scaling effects
Simple beam theory (Den Hartog 1949:79) shows that the deflection (δ) of  a uniform cantilevered 

beam is:

δ= PL3/(3EI) or δ = wL4/(8EI)

Where:

P is a point load at the end of  the beam

w is load per unit length

E=Young’s modulus of  the beam material

I=second moment of  area of  the beam cross section.

The wing spar of  a pterosaur is more complicated than this in that the second moment of  area 

varies along the length as does the loading, however the underlying dimensional characteristics do not 

change, so it is instructive to briefly examine the scaling of  these relationships.

In order to do this, another key formula of  beam theory must also be considered. The formulae 

above are for the complete beam, but at any location along its length there will be a transverse stress 

distribution that is characterised by the following formula (Den Hartog 1949:39)
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σ=My/I

Where σ is the local stress at distance y from the neutral axis

M is the local bending moment

y is a distance from the neutral axis

I as above.

Under the assumptions of  simple beam theory, the stress distribution will be linear across the 

section (see Fig 4.5) but if  the neutral axis of  the section is not equidistant from the opposite sides the 

maximum surface stress will be larger on one face than the other.

Returning to the deflection, as pterosaurs vary in size it is likely that the ratio of  deflection to span 

will need to remain constant. The upward curvature of  a wing subject to bending will have two effects - it 

creates dihedral, which increases the roll stability and also reduces the projected area, which reduces the 

aerodynamic efficiency (Hoerner 1965:7-9, Kuenn 2013) (although this is to some extent offset by an 

increase in span efficiency Cone 1962, Kroo 2005). Whatever the precise effects, they are effects that will 

vary little with scale and consequently it is reasonable to assume there are no strong reasons why the 

shape of  the wing deflection curvature should not remain more or less constant with scale.

If  this is valid, then δ/L is constant, and so:

δ/L is proportional to PL2/I for a constant material (i.e. E=constant). For isometry, the force will 

vary as L3 so 

δ/L ∝ L5/I. 

So for constant δ/L, the second moment of  area I must be proportional to L5. Since I∝to section 

depth4, the bone depth will increase faster than the bone length (with an exponent of  5/4), i.e. the bone 

must become relatively more robust as size increases. However, Witton (2008) calculated that pterosaur 

mass is allometric with span, having an exponent of  around 2.5, meaning that I is proportional to L4.5, 

reducing the relative rate of  the increase in section depth (to an exponent of  1.125). Either way, larger 

pterosaurs are likely to require relatively larger diameter wing bones, resulting in a reduction in the 

aerodynamic performance (as well as in increase in skeletal mass - see Chapter 8 for more discussion of  

this point).

Returning now to the second key formula:

σ=My/I, 

It can be shown that σ∝L since M∝L4 and I∝L4. However, for any given material, i.e. bone, the value 

for allowable stress does not change with animal size - bone is bone regardless of  the animal it is in and its 

strength does not increase with animal size (Currey 2006:130).

 Consequently for isometry:
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I/y must be proportional to M and since M∝L4, I/y∝to L4. Now, for a cylinder, I∝D4, so I/y∝ D3 

and thus D∝L4/3, which reduces to L1.17 (for Witton mass scaling). So here again the wing bone diameter 

must increase proportionately more quickly than bone length, but by a different (higher) exponent to the 

rate driven by bending deflection. Consequently it appears that surface stress rather than deflection may 

well be the limiting factor. 

4.3.2 Non-linear effects
The foregoing discussion is based upon simple beam theory equations, which assume small 

deflections and no distortion in the structural cross section. In practice thin walled tubes (such as the long 

bones of  pterosaurs) may be subject to more complex phenomena, in particular the possibility of  local 

bucking. Anyone familiar with a drinking straw will know that if  it is bent it initially takes up a smooth 

curved shape but as the bending is increased there comes a point where it suddenly kinks, but does not fail 

in the sense that the material ruptures. What has happened is that the cross section of  the straw deformed 

due to second order effects and it became oval, with the long axis in the plane of  bending, thus reducing 

the second moment of  area of  the cross section, reducing the bending stiffness at the same time as the 

bending moment was increasing, resulting in catastrophic failure. This phenomenon is known as Brazier 

buckling (Brazier 1927). It is also possible for local wrinkling to occur on the compression side of  the 

structure, so called “bifurcation instability” (Karamanos 2002). These effects are very complex and the 

subject of  extensive research (for example Wadee et al. 2006 and Corona et al. 2006). 

In practice, there is a minimum level of  wall thickness at which this effect occurs, and for thicker 

walled structures the failure occurs as rupture of  the material. This limiting value of  wall thickness 

depends upon the Young’s modulus and Poisson’s ratio of  the material (Brazier 1927, Young & Budynas 

2002:735). 

Brazier’s formula for the critical bending moment of  a tube was given as:

Where, r=radius of  curvature of  the tube and confusingly, based on the earlier terminology in this 

document, σ=Poisson’s ratio.

The Young’s modulus (E) of  bone varies a great deal (Currey 2006:130). Typically, the value for 

mammal long bones ranges from 15GPa to 25GPa and it can be as high as 28.2GPa for the tibiotarsus of  

a flamingo. Since pterosaurs are clearly highly adapted for flight, and as Dumont (2014) has shown for 

birds, bone stiffness is important, it is reasonable to assume that the forelimb long bones of  pterosaurs will 

have E values towards the upper end of  the range that is available from the material - in other words 

somewhere between 20GPa and 30GPa.
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There is some debate about the appropriate value of  Poisson’s ratio for bones. Currey (2006:56) 

gives a range of  values that have a mean of  around 0.4. Rupin et al. (2008) note that the common value 

given in the literature is 0.3, but they measure a value of  0.42. However, Shahar et al. (2007) give values in 

the range from 0.10 to 0.20. From the formula above it is clear that the larger the value of  Poisson’s ratio 

the larger will be the critical bending moment. Accordingly, to be on the conservative side, a value of  0.2 

will be used in the analysis that follows (though a brief  sensitivity analysis showed that the difference in 

the results between using 0.2 and 0.4 is very small.)

Referring again to the classic beam theory equation for the stress distribution of  a section subject to 

bending:

σ=My/I (with σ having its original meaning of  stress).

Brazier’s formula above can be inserted into this equation to give the critical stress at which 

buckling occurs based on different value of  Young’s modulus (E) and the wall thickness ratio (r/t). Currey 

(2004) presents data that links E and tensile strength of  cortical bone (Figure 4.6). There is scatter in the 

data but for E of  20GPa and 30GPa, typical yield stress values of  150MPa and 200MPa respectively. The 

result of  using these values in the relationship described above is shown in Figure 4.7. The critical stress 

increases with E and decreases with r/t ratio. Using the appropriate values for the stress for each value of  

E gives critical wall thickness ratios of  46 and 51.

An alternative and more generalised approach to determining the critical wall thickness ratio is 

given by Reddy (1979) in the form of  experimental data that relates yield strain to critical wall thickness 

ratio (Figure 4.8). This figure combines Reddy’s (1979) result with data from Currey (2004) that relates 

yield strain to E. Projecting the Currey (2004) results onto the Reddy (1979) graph predicts critical wall 

thickness ratios ranging from 30 to almost 60, bracketing the values calculated above. 

Overall then, it appears that for high modulus cortical bone, tubular bones with a wall thickness 

ratio (r/t) of  at least 30, maybe as much as 60, are unlikely to suffer buckling failure when loaded in 

bending.

This r/t value implies a wall thickness of  0.2mm to 0.4mm for a 25mm diameter tube. As such the 

WP1 wing bone mid shaft sections, which are around 20mm to 25mm wide and have minimum wall 

thicknesses of  around 1.0mm (Figure 4.4), are unlikely to be vulnerable to local buckling failure. It is 

apparent from the relationship above that the buckling resistance is inversely proportional to the radius of  

curvature. Consequently a circular approximation for the WP1 section is actually unrealistic since the 

radius of  curvature in the dorsal side (which is subject to compression due to flight loads and thus 

vulnerable to bucking) is less than for a circle of  comparable dimensions. 

A better approximation is a 1.5:1 ellipse, for which the greatest radius of  curvature is a2/b (Chan et 

al. 2010) where a and b are the major and minor radii respectively. Chan et al. (2010:394) note that a 

number of  investigations have shown that the buckling of  an elliptical section (about the long axis) “could 
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be accurately predicted by the buckling stress of  a circular hollow section with a radius equal to the maximum radius of  

curvature of  the elliptical hollow section.”  

Very roughly then, comparing an 1.5:1 ellipse with a circle of  comparable area (with a radius equal 

to the mean of  the radii of  the ellipse) the maximum radius of  curvature is 80% larger (almost twice) that 

of  the circle (Figure 4.9). Consequently the critical r/t value will be around half  that of  the circular 

section, somewhere between 0.36mm and 0.72mm, which becomes close to the minimum thickness in this 

region. The foregoing suggests that the WP1 mid-shaft section is likely to be close to failing in bucking but 

providing the wing bone material has an E value towards the upper end of  the possible range for bone, 

this might be avoided. 

There are clear weight advantages in making the wing bones as thin walled as possible. A simple 

parametric study of  an elliptical cross section beam sized for constant bending stiffness showed that 

weight decreased in almost direct proportion to the wall thickness (Figure 4.10). As is clear from the cross 

sections in Figure 4.4, the ratio of  wall thickness to radius is higher for the more distal phalanges, so they 

too will not fail by local bucking.

4.4 Wing spar loads
As noted earlier, in mechanical terms the wing spar of  a pterosaur is primarily a cantilevered beam 

loaded in bending and torsion. The proximal end is embedded in and restrained by the musculature 

around the humerus but more distally the bones are unsupported. The flight loads on the spar come from 

the aerodynamic forces generated by the wing membrane - primarily the weight support forces (lift) 

required to maintain flight and the membrane tension required to resist flutter. Since the spar is at the 

leading edge of  the membrane the centre of  action of  the lift force will be everywhere posterior to the 

local wing bone resulting in torsional loading in addition to bending. 

While it is relatively easy to estimate the lift forces and moment since lift is almost exactly equal to 

weight and can be assigned a span-wise variation, the torsional loads are much less tractable. The 

aerodynamic centre of  lift is approximately 25% of  the local chord from the leading (anterior) edge of  the 

section (Katz & Plotkin:113) so the applied torsion will depend upon not only the span-wise lift 

distribution but also the planform shape. As discussed in Chapter 7, it is likely that the pterosaur wing 

planform was one with substantial forward sweep (see Figure 7.3), which would not only have the effect of  

balancing the centres of  mass and lift, but also reducing the torsional loads, particularly on the proximal 

wing bones, for the following reason. The predominant membrane tension is in the span-wise direction, so 

the vertical component of  that tension at the attachment to the distal wing bones will result in a torsion 

moment about the more proximal bones. However, from inspection of  Fig 7.3 it is apparent that while the 

forces on WP3 and WP4 may be exerting a torsion moment in a head down rotation about the glenoid, 

the forces on WP1 and WP2 are having the opposite effect, as are any tension forces acting on the radius/

ulna. In the absence of  a full, detailed model of  the wing bone/membrane interaction it is impossible to 
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quantify these effects but in view of  the apparent cancellation of  forces noted above, it was deemed 

reasonable to ignore the torsional loads in the following analyses. This is clearly a deficiency that could be 

remedied by the construction of  either a fully detailed structural computer model or an instrumented 

physical model. Both are beyond the scope of  this present work.

While the lift forces will load the wing spar in dorsoventral bending, the tension in the membrane 

will result not only in the torsional moments discussed above, but also substantial anteroposterior bending 

moments. The possible magnitude of  these moments is discussed in Chapter 6, but suffice to say at this 

point that they appear to be considerably greater than the lift moments.

Whatever the loading, in order to understand its effect on the wing spar structure, the structural 

properties of  the spar must be determined. As noted above, the deflection and local stress magnitudes in 

the structure depend primarily on two factors, the second moment of  area of  the cross section and the 

overall dimensions of  the section. (Strictly speaking, the local stresses may also be influenced by stress 

concentrations - abrupt changes in cross section, but given the smooth, curved shapes of  the wing bones 

this possible effect was considered to be negligible (Young & Budynas 2002:771-797).)

Therefore it was necessary to know the bone cross section geometry along the spar, data that had to 

be obtained almost exclusively from measurements of  museum specimens since, with the notable 

exception of  Steel’s PhD thesis (Steel 2005) which contained a limited range of  illustrations obtained from 

thin sections, the published literature was almost silent on the subject despite frequent comments on the 

exceptionally thin walled nature of  pterosaur bones.

4.5 Wing bone morphology and measurements
In order to obtain the necessary wing bone morphology information, collections in a number of  

museums were visited:

Natural History Museum, London

Sedgwick Museum, Cambridge

Museum of  York, York

State Museum of  Natural History, Karlsruhe

American Museum of  Natural History, New York

University of  Portsmouth

Initially the approach was to use photography to obtain the required information. The external 

morphology was obtained by taking scaled images from which the external dimensions could be measured 

(with a focus on the dorsoventral and anteroposterior planes). The bone cross section was less readily 

obtained since it could only be seen in broken specimens, or a few thin sections (Steel 2005). All this 

changed with the advent of  financially accessible CT scanning and in 2010 three fragments of  

ornithocheirid wing bone (NHM 33228, probably WP1 or WP2) were scanned at the NHM. Further 



42

scans were commissioned from the NHM, specimen numbers R3877 (fragment, right ulna Istiodactylus 

latidens), NHM PV R3880 (fragment, ulna, Istiodactylus latidens), R39411 (an almost complete 

ornithocheirid WP1) and R41637 (Figure 4.11), almost complete ornithocheirid WP1. More details of  the 

NHM specimens are contained in Steel (2012). 

Ultimately the most relevant data was obtained from University of  Portsmouth specimens, a 

complete WP1 and an articulated WP2 and WP3 from a similar sized individual (see Figure 4.12), which 

were scanned at µ-Vis (University of  Southampton). Due to the size of  the specimen, the scan was made 

as a series of  slices 10mm apart, but for the calculation of  structural properties this is more than adequate 

definition. These specimens, plus the almost complete NHM OR41637 WP1 provided most of  the 

information required to create the structural model. Thin section results (Steel 2005) and measurements 

from fractured specimens were used for WP4, ulna and humerus.

4.5.1 Wing bone sections
The CT scan data of  the wings bone sections (Figure 4.13) were analysed using ImageJ with 

MomentMacro. Slices were selected along the wing bones and “repaired” and partitioned by eye in 

ImageJ, (http://imagej.nih.gov/ij/index.html) then analysed using MomentMacro (http://

www.hopkinsmedicine.org/fae/mmacro.html). The technique was validated against known shapes. This 

combination allowed the second moments of  area about the two primary axes (Ixx and Iyy) to be 

obtained (required to estimate the bending stiffness and deflection), as well as the orientation of  the 

neutral axis and the extreme values of  surface distance from the neutral axis (required for estimating the 

surface stress). 

4.6 Structural modelling of the wing spar

4.6.1 Beam theory or FEA?
With the exception of  the humerus, the wing spar bones are all relatively slender so conventional 

beam theory can potentially be used to analyse the deflection under load (Roark 2002:125). However, 

strictly speaking beam theory should only be used when the deflection is small (Den Hartog 1949:79) 

since intrinsic in the formulation is an assumption that the projected beam length is equal to the actual 

beam length. However, if  the deflection is large, in the case of  a cantilever for example, the free end not 

only moves vertically but also horizontally, which has the effect of  reducing the bending moment if  the 

direction of  the applied force does not rotate with the beam.

In the case of  a pterosaur wing spar, the deflection is likely to be larger than generally considered 

acceptable for the use of  beam theory - maybe as much as 15% of  the wing length (Browning 2007). In 

addition to the large deflection, the other characteristic that makes the pterosaur wing spar very different 

from most man-made structural beams is that the cross section varies along the length. Beam theory can 
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still be applied to beams with varying second moment of  area, with the variation in I included in the 

integration that is required to obtain the deflection, but taken together these two factors suggest that a 

finite element approach may be more appropriate, and there is no doubt that if  modelled in the requisite 

detail this approach would give a highly accurate result. 

However, in order to create the necessary mesh models for the FEA analysis, either detailed scans 

with the slices at voxel spacing would be required, or 3D models prepared from widely spaces scans, thin 

sections and photographic information. Since the information for the former approach was not available 

(with the exception of  the NHM WP1 scan) the latter approach would be required. In practice, “reverse 

engineering” complex shapes in 3D modelling packages such as Rhino is extremely difficult and time 

consuming (see http://wiki.mcneel.com/rhino/reverseengineering) and most of  the available techniques 

are based on the use of  point cloud datasets obtained from 3D scanners or photogrammetry, neither of  

which were practical for the available specimens since almost all were part encased in matrix. The only 

way that the modelling could have been undertaken was by lofting the cross sections (using a 3D CAD 

program to create faired surfaces through the cross sections), a very fiddly and time consuming process 

which might be viable for a model of  the exterior surface, or a shell with an assumed constant wall 

thickness, but a forbidding task when the processes requires two slightly different shells to be accurately 

nested one inside the other. 

4.6.2 A beam theory model
In view of  these difficulties, a simpler beam theory based approach was developed and calibrated 

against known analytical solutions and simple FEA modelling. The key simplification was to model the 

bones as a series of  parallel sided sections rather than a continuous curve. Clearly a trade-off  between 

accuracy and the number of  sections was to be expected, so this was investigated. For a beam with a 

constant cross section (for which an analytical solution was calculated) convergence to within 1% of  the 

analytical solution for the end deflection was achieved with 10 sections, but more were needed for a beam 

with variable cross section. The WP1 bone was selected since the variation of  the second moment of  area 

with length is similar for the Ulna, WP2 and WP3. In this case 20 sections gave a result within 5% of  the 

likely asymptotic value computed for 500 sections (an analytical solution not being readily calculated), and 

50 sections were within 2% (Figure 4.14). Accordingly, it was decided to use a figure of  50 sections per 

bone for the calculations to keep the process manageable and computationally efficient.

In order to produce data for 50 cross sections of  each bone, the variation of  second moment of  

area along the length of  each bone as measured from CT scans and other sources was plotted and curves 

fitted to the data so that precise values could be interpolated at each of  the 50 locations along the length. 

Figure 4.15 shows a typical example of  the shape of  the variation (for WP1) and the nature of  the fitted 

curve. The overall bone width and depth were also included in the model so that the surface stress could 

be estimated. In order to do this the simple approximation was made that the distance from the neutral 

http://wiki.mcneel.com/rhino/reverseengineering
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axis to the outer surface was half  the relevant section dimension. This is likely to be very reliable in the 

proximal bones as the mid shaft bone cross sections are close to symmetrical for the humerus, ulna and 

metacarpal. It is also reliable for the distal bones (the wing phalanxes) in the anteroposterior direction 

since they are more or less symmetrical in this orientation, however in the dorsoventral direction the 

asymmetry of  the wing phalanxes means that this assumption is slightly in error. Comparison of  the 

calculated distance from the neutral axis to the outer surface and the half  the section depth showed that 

in the mid shaft region (where surface stresses are highest) the error in making this assumption was less 

than 10%, in the direction that results in an underestimation of  the tensile stress on the ventral extreme 

of  the bone. The maximum error occurred in the first wing phalanx, and reduced to only a few percent in 

WP2 and WP3. 

4.7 Stiffness distribution
The distribution of  Ixx and Iyy along a typical individual bone is shown in Figure 4.16 and for the 

complete spar in Figure 4.17, from which a number of  characteristics are apparent. As might be 

expected, the average value of  I decreases along the length of  the spar, as does the bending moment. 

However, within any particular bone, the values of  I are more or less constant in the diaphysis but 

increase substantially in the epiphyseal regions (even when the effects of  the trabeculae are ignored), 

despite the cortical thickness being much reduced towards the ends of  the bones. Perhaps most 

significantly, the relative values of  Ixx and Iyy change along the spar. In the proximal region, distally as far 

as the metacarpal, the value of  Ixx (which relates to bending in the dorsoventral direction) is greater than 

Iyy, but at the first wing phalanx the relative values are reversed and the anteroposterior stiffness is twice 

that in the dorsoventral direction (at last as far as WP4, where the values are similar.) 

This change had not been previously identified and yet appears to be present in all pterosaur wing 

fossils that I have examined. The functional interpretation is that the wing spar structure is balancing the 

requirements of  controlling the dorsoventral wing tip deflection with providing sufficient anteroposterior 

stiffness to ensure adequate membrane tension. Since the tip deflection is particularly sensitive to the 

stiffness of  the proximal bones, this region is biased towards dorsoventral stiffness, but since the 

membrane tension is more or less span-wise, the more distal regions are subject to bending due to the 

membrane tension, so must be adequately stiff.

4.8 Summary
The gross morphology of  the pterosaur wing spar suggests a structure that has evolved to resist 

compressive loading in the proximal bones (proximal to the wrist) and bending loads more distally. In 

flight, the applied loading is primarily dorsoventral due to the aerodynamic lift on the wing and 

anteroposterior due to the tension in the wing membrane. While some torsional loads are also likely to be 
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present, their quantification is problematic and they are considered likely to be small compared to the 

other loads.

Since the distal wing bones, which are subject to bending loads, are relatively slender, beam theory 

is considered to be sufficiently accurate as a modelling approach. It provides sufficient accuracy to allow 

reliable estimation of  deflections and local stress loading and is computationally far less demanding than 

an approach based on finite element analysis.

Initial assessment of  the distribution of  cortical material in the wing bones shows that the proximal 

bones (as far as the metacarpal) have greater stiffness in the dorsoventral plane than anteroposteriorly, 

whereas more distally the opposite is the case, by a factor of  around 2:1. This is interpreted as a structure 

that minimises the overall wing deflection whilst also providing adequate stiffness in order to tension the 

wing membrane.
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Chapter Five

Dorsoventral Wing spar loading

5.1 Distribution of Lift loading
The aerodynamic forces on the wing comprise the lift force required to balance the weight of  the 

animal and keep it in the air and the drag forces generated by the wing, which are a combination of  

profile and induced drag. In practice the drag forces are much less than the lift forces, typically no more 

than 10%.

In steady flight, the total vertical aerodynamic force must equal the weight of  the animal. This 

aerodynamic force is the resultant of  lift and drag, but since the drag component is less than 10% of  lift, it 

is a good approximation to assume lift is equal to weight (for a lift:drag ratio of  10:1 for example, the error 

involved in making this simplification is approximately 0.5%). 

Since the lift force acts in a more or less vertical direction it imposes dorsoventral bending on the 

wing spar. The magnitude of  the bending moments will depend not only on the total lift force but also the 

distribution of  lift along the wing. The lift distribution is aerodynamically significant because it affects the 

magnitude of  the induced drag, a significant component of  the total drag particularly in soaring flight. It 

has long been known from lifting line theory that for a simple planar wing the induced drag is minimum 

when the lift distribution is elliptical. However as will be discussed in Chapter 7, there is in practice an 

unavoidable interaction between the requirements for pitch stability and the lift distribution along the 

wing. For example, in conventional flying wing aircraft with posterior sweep, pitch stability is achieved by 

twisting the wing such that the angle of  attack in the distal regions of  the wing is reduced; so-called 

washout. In such a wing, lift distribution deviates greatly from the elliptical optimum and there is a 

significant induced drag penalty, which is the aerodynamic price of  pitch stability. Alternatively in flying 

wing configurations with anterior sweep the wing must be twisted such that the angle of  attack is 

increased towards the wingtips, again resulting in a sub-optimum lift distribution (and a structurally 

challenging geometry.) These considerations apply to man-made aircraft which are more or less 

aerodynamically stiff  structures, at least within the safe flight envelopes. However the membrane wing of  

the pterosaur is inherently flexible and subject to rather different aerodynamic considerations. Most 

importantly, the membrane and the wing spar are sufficiently flexible that they will deflect significantly 

under the influence of  aerodynamic loading and as is shown in Chapter 7 this flexibility may be beneficial 

to the extent that it enhances pitch stability whilst allowing an efficient lift distribution.
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In addition to quantifying the induced drag efficiency and the pitch stability of  the different wing 

configurations considered, the XFLR5 program also provides output in the form of  the variation of  lift 

coefficient along the wing. A typical example is shown in Figure 5.1. By combining this variation of  the 

local lift coefficient with the local chord along the wing the variation of  lift force could be calculated. The 

result is shown in Figure 5.2. This lift distribution was then used as input to the wing spar model described 

in Chapter 4, with the input values being generated from a seventh order polynomial curve that was fitted 

to the load distribution using the CurveExpert Pro program (http://www.curveexpert.net/products/

curveexpert-professional/).

5.2 Lift magnitude
 Two mass estimates were used, at the lower end of  the range that by Bramwell & Whitfield (1974) 

and at the upper end the estimate using Witton's methodology (Witton 2008). Whilst the lift forces subject 

the wing spar to a dorsally directed bending moment this is offset to some extent by the mass of  the wing 

which is directed in the opposite sense. Thus in order to obtain the actual bending moment the applied 

load is a lift minus the wing weight. 

In the literature there are three papers that discuss the distribution of  mass between the different 

body parts, Henderson (2010), Bramwell & Whitfield (1974), and Strang et al. (2009). Henderson gives a 

range of  values which appear to centre around 20% for the wing mass, whereas Branwell & Whitfield 

(1974) give a figure of  around 35%. Strang et al. (2009) calculate a value of  43%. Witton & Habib (2010) 

criticised Henderson's (2010) work for underestimating the muscle mass on the forelimbs so it seems 

probable that his mass allocation underestimates the wing proportion. Accordingly, a somewhat arbitrary 

figure of  40% was used, perhaps towards the high end of  the likely range which means that the bending 

moments are if  anything underestimates, which should be borne in mind in the interpretation that 

follows.

5.3 Wing spar dorsoventral deflection
With these reservations in mind Figure 5.3 presents the calculated wing deflection assuming that the 

wing spar behaves as if  all the joints were rigid and that the proximal end is firmly fixed into the glenoid. 

This is of  course not a very anatomically realistic assumption but is used here as a starting point for this 

analysis. On this basis it is immediately apparent that with the Witton (2008) mass estimate the deflection 

of  the wingtip is just over 1m, in other words about one third of  the span, which seems high, certainly 

when compared to birds. Since if  all other things are equal the deflection is directly proportional to the 

mass then obviously the deflection for the Bramwell & Whitfield (1974) mass estimate is much less than for 

Witton (2008). On this basis then it would appear that the Witton (2008) mass estimate is too high. 

http://www.curveexpert.net/products/curveexpert-professional/
http://www.curveexpert.net/products/curveexpert-professional/
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5.4 Effect of proximal fixity
However as noted above, the assumption that the wing spar is a simple built-in beam attached to 

the glenoid is far from realistic. In reality the proximal bones at least as far distally as the wrist are 

surrounded by heavy musculature and constrained by tendons. Thus in structural terms this region of  the 

wing is more akin to a stayed structure than a built-in beam and as such it is a very complex structure to 

analyse. As an extreme simplification that would bracket the plausible range of  different geometries, 

modifications were made to the model such that the wing was made extremely stiff  between the glenoid 

and the wrist and the glenoid and the end of  the metacarpal. These assumptions are the equivalent of  the 

animal being able to actively control the location of  the wing bones distally as far as either the wrist or the 

distal end of  the metacarpal, by applying tension to the appropriate controlling muscles and tendons. 

This would have the effect of  changing the loading on the bones from bending to primarily compression, 

which might explain in part why the proximal bones are closer to circular in cross-section than those 

situated more distantly. In this case the tip deflection is substantially reduced to between 0.6 and 0.7 m 

depending on the extent of  the assumed high stiffness region of  the wing. Since it appears that the 

unloaded shape of  the wing phalanxes is such that they have a degree of  ventral curvature, the 

combination of  the deflection and this curvature would mean that the actual elevation of  the wing tip was 

quite small (Figure 5.4).

5.5 Material stresses and safety factors
When the structure is subjected to bending the deflection is obviously one important consideration 

but it is also important to understand the local stresses to which the structure is subjected. In order to do 

this the surface strain along the ventral side of  the wing bones was calculated and compared to published 

values of  the bending strength of  bone. Using data from Currey (2004) a value for bending strength of  

300MPa was selected as an appropriate upper limit for bone with a high Young's modulus of  around 25 

to 30GPa (see Figure 5.5). Using this value, the factor of  safety (the ratio of  the calculated stress to the 

maximum bending strength, or the likely ratio between the typical loading in life and the failure load of  

the material) was calculated. The results are shown in Figure 5.6, for a calculation which assumes the 

beam fixed at the glenoid. It is immediately apparent that the lowest factor of  safety occurs in the ulna but 

for the reasons given above this simple model is inadequate and in fact the ulna will most likely not be 

subjected to significant bending load. 

However regardless of  the assumptions about the fixity of  the proximal regions of  the wing spar, 

from the end of  the metacarpal the structure will be subjected to pure bending so these calculated safety 

factors are probably reasonable for that region. They show that in the mid shaft region of  the first wing 

phalanx the safety factor drops to 2.5, which is very low for a natural structure subjected to dynamic 

loading (Palmer & Dyke 2010), particularly when bearing in mind that the bone structural parameters 
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used in the analysis are right at the upper end of  the plausible range. A more likely factor of  safety is 

somewhere between four and six, though given the somewhat extreme nature of  the pterosaur structures 

it is likely that they operated towards the lower end of  this range. Here again the value calculated using 

the Bramwell & Whitfield (1974) body mass methodology is very different and gives a factor of  safety of  

just over five.

From the foregoing it would appear that on the basis of  both wingtip deflection and more 

importantly the stresses in the wing bones, the combination of  the Witton (2008) mass estimate and the 

optimal lift distribution calculated using the XFLR5 program is unlikely to have been a practical 

condition for the pterosaur. To understand the sensitivity of  the results to assumptions about the lift 

distribution, the lift distribution was modelled as a simple linear variation from a maximum at the 

proximal end of  the wing to zero at the wingtip: a triangular lift distribution and one which would not be 

unreasonable for a wing that generated a roughly constant lift coefficient along its length. This lift 

distribution would incur an induced drag penalty but result in reduced bending loads in the wing 

structure. The induced drag penalty would typically be around 10% to 15% of  induced drag, which 

would in turn represent just 2% to 3% of  total drag - not a very large increase. Adopting this assumption 

the deflection of  the wingtip for simple “fixed at the glenoid” model reduced from just over a metre to 

0.7m (23% of  the wing length), which would reduce further in the more realistic case of  high stiffness in 

the proximal wing bones. More tellingly this modification has the effect of  reducing the surface stress and 

thus increasing the factor of  safety to around 4.5, a low value but not an impossible one.

The foregoing analysis has used a mixture of  relatively robust information, the overall bone 

dimensions obtained from CT scans and the properties of  bone in combination with more speculative 

variables, the total body mass, the acceptable structural factors of  safety and the patterns of  load 

distribution. As such it cannot give a precise answer but it does strongly suggest that the Witton (2008) 

mass estimate is towards the upper end of  what is possible for a bone structure.

5.6 Structural efficiency
It is also instructive to examine the distribution of  the structural strength as compared to the 

pattern of  loading since, for an optimal structure, these two are expected to be in correspondence. At the 

simple level of  visual observation this is clearly the case for the pterosaur wing spar in that the humerus is 

much more robust than the more distal wing bones. However as Figure 5.7 shows this correspondence is 

actually close over the full extent of  the wing. The graph shows the modulus of  the wing bone sections (a 

proxy for the maximum surface stress) overlaid with the bending moment, scaled so that it fits on the same 

axes. Clearly the wing bones have local regions of  very high modulus (and hence low stress) at their ends, 

but in the central region of  the bone shafts the modulus closely follows the distribution of  bending 

moment. Given that large pterosaurs were clearly highly adapted to the structural demands of  flight it is 
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reassuring that the calculated bending moments appear to correspond so closely to the structural 

properties of  the fossil bones, increasing confidence in the quality of  this result

5.7 Summary
The wings of  pterosaurs deflected substantially, maybe as much as 25% of  the length of  the wing, 

under both aerodynamic lift and membrane tension loads and the deflection was limited by the bending 

strain in the bones before it became sufficient to be aerodynamically detrimental. 

The distribution of  bending stiffness along the wing spar varies along its length. In the dorsoventral 

plane it closely follows the applied lift loading, pointing to a refined structure optimised for flight loads. 

Distally (from the first wing phalanx) the bending stiffness in the anteroposterior plane is as much as twice 

that dorsoventrally, a likely response to the need to resist high membrane tensile loads required to suppress 

aeroelastic flutter.
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Chapter 6 

Wing spar anteroposterior loading
The foregoing sections showed that the pterosaur wing spar has a biased stiffness distribution with 

greater dorsoventral stiffness in the proximal regions, presumably to limit the deflection of  the wingtip, 

but this switches over to greater stiffness in the anterior posterior direction at the first wing phalanx, 

presumably to maintain adequate the tension in the membrane.

Can this result be used to infer information about the membrane?

6.1 Maximum membrane tension loading
One approach is to apply the membrane tension as a load in the wing spar model, bending the spar 

in the anterior posterior direction. The maximum load that the spar can withstand will be an indication 

of  the maximum membrane tension assuming the parsimonious view that the wings bones will only be as 

strong as they need to be to withstand the flight loads. The simplest way to model this is to assume that 

the tension is uniform across the membrane and oriented in a mediolateral direction, as sketched in 

Figure 6.1. In this case, since the local wing chord is approximately 0.5m, the moment experienced by the 

bones that run more or less parallel with the loading direction (WP1 and Mc4) will be T x 0.5 x 0.25Nm 

(where T= tension per metre width of  membrane.) Thus, for tensions of  500 and 100N/m respectively, 

the bending moment will be 62.5Nm and 125Nm. The minimum values of  second moment of  area in the 

anteroposterior direction are 7000mm4 and 3000mm4 for the WP1 and Mc4 respectively, and the half  

width of  the sections are 14.7mm and 8.5mm. Consequently the maximum local stresses on the two 

bones will be 130MPa and 180MPa for a tension of  500N/m respectively, which gives safety factors of  

2.3 and 1.7 (assuming a bending strength of  300MPa). These values are implausibly low, so if  this 

assumed loading pattern is correct, the maximum membrane tension can only be 280N/m or less (to give 

safety factors of  at least 3).

Closer inspection of  the probable orientation of  the aktinofibrils and the pressure distribution due 

to lift (concentrated towards the leading edge) suggests that a uniform tension distribution is actually 

unlikely. An alternative loading assumption is shown in Figure 6.2. It assumes that the load bearing 

aktinofibrils are attached to the three most distal wing phalanxes and are directed medially towards the 

elbow region, thus containing most of  the tension within the “bow” of  the wing anterior to a line between 

the elbow and the wing tip.

The calculations for this are more a little more complex than for the uniform load due to the 

direction of  the loading. In theory it is possible that as the wing bones deflect under load, the applied 
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bending moments increase due to a change in the geometry of  the aktinofibrils relative to the wing bones. 

If  this is the case, the loading becomes extremely difficult to analyse since the result can only be 

determined by iteration or a full FEA type analysis. Fortunately, by inspection it became apparent that this 

effect was unlikely to be large. Comparison of  the undeflected and possible deflected shapes of  the wing 

spar showed that the geometry of  the loading does not change if  it is assumed that the aktinofibrils must 

remain more or less at constant distances from the wing bones (in other words that the membrane does 

not stretch significantly in the anteroposterior direction).

Using the estimates of  bending moment described above, it is possible to make estimates of  the 

maximum surface stress in the wing bones by examining the bending moment at the points of  minimum 

second moment of  area. These occur at roughly the mid length of  the WP1, 75% of  the length of  WP2 

and 67% of  the length of  WP3. The bending moments were calculated using the geometry in Figure 6.2 

and taking the possibly conservative assumption that the tension is evenly distributed along the three 

distal-most bones, WP2, WP3 and WP4. (In fact in the case of  WP4 this is almost certainly conservative 

since these bones taper to a very fine point at their extreme distal ends, so would probably bend 

excessively if  the tension were applied evenly.) However, in the absence of  a viable way to make a more 

refined estimate, the assumption of  uniform distribution will tend to give a high value of  the bending 

moment. The results of  this analysis are presented in terms of  bending stress safety factor in Table 6.1 

below.

Table 6.1 Predicted membrane tension

It is apparent that at a tension of  500N/m the safety factors are in excess of  5 on all the bones, but 

drop to 2.9 and 4.6 in WP2 and WP3 respectively at 1,000N/m. Given the close correspondence between 

the dorsoventral loading and the structural strength of  the wing spar demonstrated above, the low value 

in WP2 is possibly anomalous. But even if  this is “averaged out” between WP1 and WP3, the result is still 

less than 5 in WP3, suggesting that the wing spar becomes maximally loaded as the membrane tension 

approaches 1,000N/m.

In summary then, the crude uniform tension distribution, an undoubtedly extreme load case 

suggests that the membrane tension could have been at least 300N/m and the more likely concentrated 

load distribution raises this to at least 500N/m, maybe as much as 1,000N/m.

Wing bone

Mc4

WP1

WP2

WP3

Tension 500N/m
8.8

11.9
5.8
9.3

Tension 1000N/m
4.4
5.9
2.9
4.6
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Is this level of  tension adequate to control the possible flutter in the membrane, which is important 

since a fluttering membrane increases drag dramatically (Morris-Thomas & Steen 2009).

6.2 Flutter limits to membrane tension
The fluttering of  membranes is a very complex phenomena and none of  the sources on the 

fluttering of  flags (such as Morris-Thomas & Steen 2009) provided results from which the necessary 

tension could be calculated. However, tests conducted by the newspaper industry (Watanabe 2002) proved 

to be a suitable source. It appears that the industry has considerable problems with large rolls of  paper 

running fast through machines: if  the paper starts to flutter it tangles up and a whole production line 

comes to a halt, with severe commercial consequences. They have therefore looked at how thin 

membranes behave under these conditions. Figure 6.3 shows a typical test rig in one of  a series of  

experiments. 

The results of  a large number of  tests with many different membrane materials were condensed 

down to one graph (Figure 6.4), which has a clearly defined boundary between conditions where there is 

flutter and where there is no flutter. The equation defining that line is:

Uw=4(m/ρd)-1/3(Td2/EI)1/3(EI/ρd3)1/2

Where:

Uw=flutter airspeed

M=membrane mass per unit area

ρ=air density

D=unsupported span of  membrane (in direction normal to air flow)

T=membrane Tension per unit length

EI=bending stiffness per unit width

E=Young’s modulus of  membrane material

I=second moment of  area per unit width

This equation can be transposed to give the following relationship for the required tension:

T=0.0156Uw
3ρ1/2d3/2m(EI)-1/2

What does this say about the conditions that influence flutter? 

For practical purposes, the air density ρ is constant and I is proportional to the membrane thickness, 

t3. Thus the formula can be further reduced to:

T∝U3d3/2m/(E1/2t3/2)

This relationship shows that speed is very important - it is a cubic relationship, the span of  the 

membrane is somewhat less important and the tension is directly proportional to the mass per unit area, 
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so a light membrane is better. Conversely, the stiffer the membrane material (the higher the value of  E) 

the lower the tension required, and more importantly, the greater the thickness the lower the tension. At 

constant material density, the requirement for minimising mass per unit area and maximising thickness 

are therefore apparently in direct conflict.

If  the membrane material density is assumed to be more or less constant, the mass per unit area, m 

will be proportional only to the membrane thickness, so the relationship can be further simplified to 

become:

T∝U3d3/2/(Et)1/2

 This implies that for any given membrane span, the tension is minimised by high modulus and 

thickness, since the proportionality of  t in the denominator in the first equation above is greater than in 

the numerator, so the effect of  thickness on stiffness is more important than its effect on mass per unit 

area. 

Using the above equations the wing membrane was modelled in a variety of  different possible 

materials. First a membrane with the same properties as extant bat wing membrane (taking the maximum 

values in Swartz et al. 1996), gives a Young’s modulus of  0.05GPa. The result is shown in Figure 6.5. In 

order to give results that were roughly in line with the requirements for flight speed and membrane 

tension, it was necessary to assume a membrane thickness of  4mm in this case. (It should be noted that 

this thickness would result in a membrane weight of  13kg, around a third of  the likely total weight of  the 

animal and therefore somewhat unlikely.) Next a membrane which is notionally heavily reinforced with 

ligament type material, giving it a significantly higher Young’s modulus - assumed to be 0.2GPa was 

modelled. (The modulus of  ligament is in the range 0.2 to 0.8GPa (Ashby et al. 1995) so this is notionally a 

membrane comprising at least 25% ligament in a matrix of  much lower modulus soft tissue). Finally, a 

high tensile membrane material assumed to comprise a matrix of  skin-like soft tissue and embedded fibres 

(aktinofibrils) made from nature's highest modulus material, keratin, was modelled. The maximum 

modulus of  keratin is 5GPa (Ashby et al. 1995) and if  it is assumed that the fibres comprise from 20% to 

40% of  the membrane (the latter being a much higher figure than implied by the membrane descriptions 

in the literature) the combined Young’s modulus will be 1.0GPa to 2.0GPa.

Comparing the likely membrane tension that is implied by the previous analysis, in the range of  

750 to 1,000N per metre, it is apparent that when the membrane is made of  4mm thick bat wing tissue, 

flutter starts at a flight speed of  just 12m/s. Given that for this animal the likely stall speed is around 9m/

s, this is a very narrow flight envelope indeed and seems very unlikely. Even with a ligament reinforced 

membrane of  the same thickness, the speed range is only increased to a maximum speed of  14 to 15m/s 

and it is only with keratin reinforcement properties that a wide range of  flight speeds becomes possible. 

As noted earlier, a 4mm thick membrane would weigh around 13kg, a very high fraction of  the 

total weight, and thus unlikely. Figure 6.6 shows the effect of  membrane thickness variation at flight 
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speeds of  10m/s and 14m/s (for only the ligament and keratin reinforcement assumptions.) In the case of  

the ligament reinforcing at a thickness of  around 2.5mm is required to achieve a maximum flight speed of  

14m/s. However, in the case of  the keratin reinforced membrane, the thickness can be reduced to 0.5mm 

to achieve the same flight envelope. 

Overall, this analysis, which admittedly relies on many assumptions and approximations, suggests 

that for flutter stability the wing membrane must be reinforced with high modulus fibres, and that without 

such reinforcement the membrane would have to be excessively thick, with associated weight penalties. 

This provides support of  the view that the aktinofibrils were made from keratin (Bennett 2000).

6.3 Membrane strain and deformation
So far this analysis has only considered the applied tension loading, but in an elastic material load 

results in extension or strain and in the case of  a membrane wing, high strain results in a membrane that 

rapidly balloons out of  shape. So not only must the membrane not exceed its tensile strength limits but 

the strains must be relatively low in order to control the shape of  the membrane. 

Here the interpretation becomes more subjective, but the basic calculations required to estimate the 

effects are straightforward. The effect of  extension on the membrane curvature can readily be determined 

by comparing the length of  a circular arc to that of  a straight line joining the ends of  the arc. The results 

(Figure 6.7) shows a strain of  just 10% produces considerable curvature or camber (camber is the ratio of  

the displacement to the span of  the membrane) of  5 to 1. The strains need to be less than 2% or less to 

keep the camber below 10 and approaching 20. Subjectively, based on observations of  sails and flexible 

wing aircraft (Pers. obs, Polhamus & Naeseth 1963, Kroo 1981, Marchaj 1996) the camber will have been 

needed to be between 10:1 and 20:1 (which requires strains of  less than 2%).

Using the membrane properties derived for the flutter analysis it is possible to calculate the 

membrane strains that result from the tensile loading. The results in Table 6.2 show that for the bat 

membrane the strains are 50% to 100% at 4mm and 2mm thickness respectively, which would clearly 

result in totally excessive deformation of  the membrane. With the ligament reinforcing the strains are still 

high at 25% for the 2 mm thick membrane. Only with the keratin reinforced membrane were the strains 

limited to the 1% - 2% range which is needed to control the spanwise camber. 

Table 6.2 Variation of membrane strain with composition and thickness

Membrane tissue

0.02GPa bat

0.2GPa ligament

2.0GPA keratin

Strain at 4mm thickness

50%

12%

1%

Strain at 2mm thickness

100%

25%

2%
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As an alternative approach to determining the effect of  membrane properties and loading, the 

tensile loads induced in a membrane due to the aerodynamic pressure load were estimated. Under such 

loading, the tension is directly related to the camber - for the membrane to have low curvature it has to 

have high tension. The tension is related to the lift forces, and thus the mass of  the animal and the tension 

was calculated using a result for thin walled pressure vessels (Young & Budynas 2002).

Figure 6.8 summaries the results. The diagonal shaded band is the variation of  membrane tension 

with camber ratio for the likely range of  weight estimates for the animal. To achieve a camber ratio of  

20:1 it is necessary to have a tension of  500 to 750N/m, and 750 to 1000N/m for 30:1.

6.4 Summary
The membrane tension is large compared to lift loads. It acts more or less parallel to the wing spar, 

with the majority of  the tension balanced within the length of  the wing spar between the elbow and wing 

tip, a structural geometry that minimises the bending moments and allows the wing to have high tension 

regions in the distal part and lower tensions more medially. Membrane tension values obtained from 

flutter analysis and membrane curvature considerations all appear to converge on a tension of  around 

500 to 1000N/m, which corresponds with the wing bone strength. Values of  this magnitude point to a 

membrane with very different properties from that of  extant bats. It needed to be extensively reinforced, 

to bring the tensile modulus up to values only achievable with high modulus, keratinous tissue, which 

sheds new light on the likely nature of  the aktinofibrils.
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Chapter 7 

Morphological constraints

7.1 Mechanical and aerodynamic constraints
There are a number of  physical conditions that can be used to infer the constraints on the wing 

morphology of  pterosaurs. These conditions do not so much say what the morphology was, but more 

what or how it could not have been. As such, when they are applied together they can be used to 

constrain the shape within quite tight boundaries. The conditions used will be:

Static balance in steady flight

Wing bone limiting strain under loading from membrane tension

Free margin behaviour

Aerodynamic efficiency

Static stability

7.1.1 Static balance: the requirement for coincidence of Centre of Mass 

(CM) and Centre of Pressure (CP)
For steady flight in any system, the CM of  the body and the CP of  the aerodynamic forces must be 

coincident so there are no applied moments and the total aerodynamic force (the resultant of  lift and 

drag) and total weight are equal and opposite in order to satisfy Newton’s third law of  motion. (Figure 

7.1).

7.1.2 Surface strain on wing bones
Structures deflect under load and their failure is the result of  interactions between the material 

properties and geometry. The distal wing bones of  pterosaurs were slender, thin-walled beams and thus 

might fail by either section buckling or rupture as local strain exceeds the yield strain of  the material. 

However, as was discussed in Chapter 4, it appears unlikely that pterosaur long bones failed in buckling, 

despite their thin walls.

Thus, for the purposes of  a structural threshold of  a pterosaur wing bone, what matters is the point 

at which surface strain exceeds a limiting tensile strain (since in bone the tensile strength is less than the 

compressive strength). Because strain is a geometric quantity, it can be used to define the limiting 
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deflection of  the wing bones and can be used to make predictions about the likely deflected shape of  

bones under load.

7.1.3 Shape of the free margin
The margin of  the pterosaur wing membrane was unconstrained posteriorly and attached distally 

to the ankle and body (Elgin et al. 2010, Kellner et al. 2010). Under flight loads the membrane will deflect 

and experience tension. It must not flutter as this creates high levels of  drag, so it must have a shape that is 

everywhere in tension. This has a direct bearing on the shape of  the free edge. 

7.1.4 Aerodynamic efficiency and induced drag
For sustained, unpowered flight, one measure of  aerodynamic efficiency is the ratio of  lift to drag. 

Since lift is fixed and equal (to a first order) to an animal’s body weight, drag must be minimised to 

achieve the highest lift:drag ratio and thus maximum aerodynamic efficiency (Azuma 2006:50). Strictly 

speaking, although maximising lift:drag ratio will maximise flight range, for some birds (and perhaps some 

pterosaurs) flight endurance appears to be a more important parameter. This is maximised by flying at the 

lowest descent (sink) speed, which does not coincide exactly with the maximum lift:drag ratio. However, in 

practice it is generally the case that increases in lift:drag ratio tend also to reduce sink rates, so low drag 

matters.

7.1.5 Static stability
While the most basic requirement for steady flight is that the aerodynamic resultant and weight are 

equal and opposite, any configuration must also be such that if  its flight path is disturbed the animal (or 

airplane) can return to a stable condition. The most demanding stability requirement is in pitch (i.e. 

rotation in the sagittal plane) because an animal’s mass moment of  inertia is much less for this axis than 

for yaw and roll (the other axes in which stability is important) and so response rates have to be much 

faster. Pitch stability is determined by the interaction of  aerodynamic and weight forces and depends on 

how they move relative to one another under the influence of  changes in the airflow over the wing. For 

example, if  a wing encounters a gust that increases the angle of  attack on its wings, the transient 

aerodynamic resultant increases in magnitude and may move anteroposteriorly, the magnitude and 

direction of  the movement being related to the local wing section.

For a simple cambered wing section, this movement is anterior (Katz & Plotkin 2001:113), inducing 

a nose-up pitch rotation which increases the angle of  attack still further and is thus destabilising (Figure 

1.11). Returning to an original flight path under these conditions can only be achieved by active control, 

which requires very rapid reaction times and precise manipulation of  control surfaces. Such ‘active 

stability’ can be provided by computer control in specialised, agile aircraft but it remains unclear whether, 

or not, it can be achieved by flying animals. The alternative, passive pitch stability, has been shown to be 
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likely in large birds (Krus 1997, Thomas & Taylor 2001) and may confer energetic advantages as it 

reduces muscular and neurological activity in flight.

If  we assume that large pterosaurs were also statically stable in pitch (a likely assumption), their 

wing characteristics must be such that not only must CP coincide with CM in a static sense, but when the 

incident flow direction changes, CP must also move in a direction to stabilise flight. In aircraft this is 

achieved in two ways, either by fitting stabilisers on the end of  a long tail behind the main wing (or ahead 

of  the wing in the case of  a canard configuration) or by adopting specific wing geometries in the case of  

flying wings. There are some wing sections, so called reflex sections, that do not generate nose up pitching 

moments, which can be used on flying wings. Alternatively, or in addition, the combination of  wing sweep 

and wing twist (in which the posterior edge in the distal regions of  the wings are twisted dorsally) or 

anterior sweep and the opposite twist will provide static stability, at the unavoidable cost of  reduced 

aerodynamic efficiency. Hoerner (1985:Chapter XI) provides a comprehensive introduction to the physics 

of  static stability. Since pterosaurs most probably had cambered rather than reflex wing sections, they 

must have secured static stability from some combination of  wing section properties, wing sweep and 

twist.

7.2 Centre of mass calculations for static balance
Bramwell & Whitfield (1974) made estimates of  the mass and centre of  mass (CM) locations for a 

6.95 m wingspan specimen of  Pteranodon. They used a slicing method for the body and neck and made 

individual mass estimates for the head, arms and legs. The total mass estimated was 16.6kg, which is 

considered low by present workers (Witton 2009, Henderson 2010). Bramwell & Whitfield (1974) also 

concluded that the CM was 6.3 cm posterior to the glenoid cavity, which in non-dimensional terms is 

0.9% of  the wingspan. Unfortunately, they did not provide sufficient details of  how they made their 

calculations for it to be possible to reproduce their result.

In order to establish independent values for the CM, new estimates were made as follows. 

Strang et al. (2009) provide mass estimates for the individual regions of  the wing (bone-by-bone) and 

these data were used to estimate the longitudinal and transverse locations of  the wing CM in the position 

used by Henderson (2010). This wing geometry was used as the starting point for the analysis of  relative 

CM and CP locations.

Henderson (2010) also provided estimates of  the total mass and CM as well as the mass and CM of  

body parts for the large pterodactyloid pterosaurs Anhanguera santanae and Pteranodon ingens. Strang et al. 

(2009) provide a mass estimate (but no CM) for Anhanguera piscator. These results are summarized along 

with those of  Bramwell & Whitfield (1974) in Table 7.1. 

The CM of  Anhanguera was estimated in two different ways. First, the body part CM locations given 

by Henderson (2010) were applied to the weight fractions given by Strang et al. (2009). Secondly, CM 
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locations were estimated from the original reconstruction, using the following assumptions. The head was 

treated as a cone, so the CM was located at 33% of  its length. The neck was assumed to be of  constant 

cross section and the body to be comprised of  two opposing cones, attached to a conical hip region. It was 

assumed that the majority of  the mass (bone + soft tissue) of  the legs was concentrated around the upper 

regions.

Table 7.1 Mass of body parts: % total

The CM of  Pteranodon was estimated using the body part CM locations given by Henderson (2010), 

(having noted that his reconstruction was in exact register with that of  Bennett (2001)). These body part 

CM locations were applied to the different mass allocations provided by Bramwell & Whitfield (1974) and 

Henderson (2010).

These approaches gave CM locations ranging from 1.03% of  wingspan anterior to the glenoid to 

0.44% posterior to the glenoid (Table 7.2).

Table 7.2 Estimates for locations of the CM

As noted above, these CM locations are calculated with the wing in the position shown by 

Henderson (2010). The aerodynamic centre of  pressure (CP) for this wing geometry was calculated using 

XFLR5 program. The location was 2.3% of  wingspan posterior to the glenoid, indicating a state of  

aerodynamic imbalance. To achieve balance the wing needed to move anteriorly – to have anterior sweep. 

Head

Neck

Body

Legs

Wings

B&W
5.2

4.9

52.4

5.0

32.5

Henderson
12.0

4.0

55.0

5.0

24.0

Strang
6.1

6.1

36.3

7.9

43.6

Species

Pteranodon

Anhanguera

Mass allocation
B&W low

B&W medium
B&W high
Henderson

Strang
Strang

Henderson

Reconstruction
Henderson/Bennett
Henderson/Bennett
Henderson/Bennett
Henderson/Bennett

Kellner & Tomida
Henderson
Henderson

CM % span
-0.17
-0.33
-0.44
0.35

-0.11
-0.22
1.03
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Accordingly, the wing was then morphed to give 200, 400, 600 and 700 mm anterior sweep. The CP 

locations were -1.4%, -0.05%, 1.5% and 2.21% respectively.

Since the wings are a significant proportion of  the total mass, anterior sweep will also result in an 

anterior movement of  the CM. This effect was calculated for the reconstructions listed in Table 7.2.

The variation of  CM and CP locations with wing sweep were then compared (Figure 7.2). The 

Strang et al. (2009) based estimates indicated a more posterior CM location in the baseline case, but more 

rapid anterior movement of  the CM with anterior sweep due to the higher wing mass fraction. In 

contrast, the Henderson (2010) based estimates started with a more anterior CM location, but the rate of  

movement with sweep was less due to the lower wing mass fraction. The overall result was that for all the 

different estimates, the CM and CP locations became coincident with the anterior sweep in the 600 and 

800 mm range. The resulting wing shape has more than 10° of  anterior sweep (Figure 7.3).

From this result it is apparent that the CM and CP locations are not coincident in many of  the wing 

shape reconstructions currently in the literature, in other words pterosaur wings had more anterior sweep 

than is shown in almost all modern reconstructions. Interestingly, the relatively early reconstruction 

produced in Bramwell & Whitfield (1974) is very close to being balanced according to this analysis. In 

particular, this approach clearly demonstrates the implausibility of  shapes with high posterior sweep (e.g. 

Witton 2009) because they would be aerodynamically unbalanced.

7.3 Shape of free margin
The wing membrane did have some internal structures: one (Bennett 2000, Padian & Rayner 1993) 

or possibly more (Kellner et al. 2010) layers of  ‘aktinofibrils’ - fibres with a higher modulus of  elasticity 

than the surrounding tissue. The recent fossil evidence indicates that these fibres were of  a diameter 

comparable to human hair (circa 0.1mm) and were probably comprised of  a collagenous or keratinous 

tissue (Bennett 2000, Kellner et al. 2010). These fibres would have increased the in-plane tensile strength 

of  the membrane but in view of  the thinness of  the membrane (<1mm) (Kellner et al. 2010), they would 

have contributed very little to its bending or compressive strength even if  they had been arranged in two 

layers on opposite faces (a configuration for which there is no fossil evidence but which would be 

mechanically the one to give the greatest out of  plane bending stiffness). 

A thin membrane with no significant out-of-plane bending stiffness can only be constrained from 

instability by in-plane tension, which is unavoidably absent in a region with a convex margin (Jackson & 

Christiet 1986) unless it is supported by stiffening structures capable of  resisting bending and compressive 

loads, like the batten stiffened regions of  yacht sails and hang-glider wings (Figure 7.4). This universal 

requirement for a concave margin to maintain membrane tension is apparent from examination of  man-

made structures like tents and sails that lack battens, as well as the membranes of  bats that use extended 

fingers to stabilise and support their wing membranes, yet have a very marked concave membrane margin 



62

between the fingers (Norbert 2002, Norbert et al. 2003) and Figure 7.4. Following this line of  reasoning, 

reconstructing a convex wing margin for pterosaurs must be incorrect: without in-plane battens, the 

membrane would have flapped uncontrollably, greatly increasing the drag (Morris-Thomas & Steen 2009) 

and destroying the shape required for flight.

A possible solution to the problem of  membrane instability is the suggestion that pterosaurs may 

have possessed a tendon that ran along the posterior margin of  the wing (Pennycuick 1988). When 

tensioned, this tendon could have stabilised the free margin, allowing an almost straight (but still 

necessarily concave) edge. However, fossil evidence for such a tendon is equivocal, and non-existent in 

larger species where preserved membranes are unknown, and mechanically it was unlikely to have been 

present. In order to be effective at stabilising the membrane edge, a tendon would have had to have been 

under considerable tension to balance the chord-wise (anteroposterior) tension of  the wing membrane. 

Such loading geometry would subject the wing bones to substantially greater bending loads than if  the 

membrane tension was primarily subparallel to the wing bones (i.e. spanwise). Sneyd et al. (1982) 

estimated that chordwise membrane tension, reacted by a supporting tendon, would have increased 

bending moments in the wing bones by a factor approximately equal to the aspect ratio of  the wing: a 

factor of  more than 10 in a typical ornithocheirid pterosaur. Bramwell & Whitfield (1974), calculated a 

slightly lower difference factor of  6 for Pteranodon, which they estimated to be structurally unsustainable. 

Simple mechanics (as well as anatomical parsimony) thus imply that spanwise tension, with no 

requirement for a tendon, was more likely the case in pterosaur wings. Lastly, the argument is also 

supported by the position of  the aktinofibrils which, when preserved, are orientated to produce 

anisotropic membrane properties that would have resisted spanwise tension (Bennett 2000, Padian & 

Rayner 1993). As Bramwell & Whitfield (1974) show, if  the membrane were supported by a trailing edge 

tendon the primary direction of  the membrane tension would have been chordwise, completely contrary 

to the orientation of  the aktinofibrils and therefore very unlikely.

7.4 Wing planform and pitch stability

7.4.1 The effect of wing shape on flight efficiency  
As noted earlier, aerodynamic theory and experimental data have shown that induced drag is 

primarily determined by aspect ratio (slenderness) and planform shape (especially the degree of  wing 

taper), although wing tip shape and distribution of  twist along the wing can also be important (Anderson 

2007:435). Theoretical studies (Anderson 2007:411) have shown that to minimise induced drag, the lift 

distribution along a wing must be elliptical, but in practice, a simple prismatic wing with 50% taper is very 

nearly as efficient as this ideal wing (Figure 3.2). However, as taper increases further it rapidly becomes 

more and more detrimental to performance (Marchaj 1988:420). A highly tapered wing not only has high 

induced drag but is also prone to tip stall (early stalling of  the wing tips relative to the more proximal 
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regions of  the wing) (Marchaj 1988: 430), which is detrimental to control during low speed flight. These 

simple parameters have been used before to explain the relatively conserved range of  wing shapes found 

amongst flying animals (Rayner 1988) and because some wing shapes work better than others under 

certain conditions, predictive methods can be used to inform choices between competing wing 

reconstructions, especially in extinct vertebrates.

To examine the effect of  shape variation in more detail, an appropriate computational method is 

required. The XFLR5 implementation of  the Vortex Lattice Method (see Chapter 3 for the justification 

for using this program) was used for the investigation. A typical input screen for the program is shown in 

Figure 7.5, illustrating the range of  parameters that can be investigated and Figures 7.6 to 7.8 illustrate 

the range of  graphical output available.

The range of  shapes evaluated is shown in Figure 7.9. The shapes to the left (columns A and B) in 

Figure 7.9 were taken from published sources (Bramwell & Whitfield 1974, Bennett 2001, Unwin 2005, 

Witton 2008 and Wilkinson 2008), with the exception of  the “Lunate” shape, which is discussed below. 

The shapes to the right in Figure 7.9 are a set of  variations on the shape in Bennett (2007): all of  very 

similar aspect ratio, but differing in taper, sweep, wing bone curvature and body length.  

The relative performance of  the different shapes is compared in two ways. First the induced drag 

was compared with the induced drag of  an ideal elliptical wing of  the same aspect ratio, to yield a ratio 

(the “e-ratio”) related to the well known span efficiency “e”. This ratio is a measure of  the aerodynamic 

efficiency of  the shape of  the wing, corrected for aspect ratio. These results are shown in the left hand 

column for each set of  morphologies. The shapes were also compared on the basis of  a direct comparison 

of  the increase in induced drag coefficient (% increase) shown in the right hand column.  

As is to be expected, the aspect ratio of  the shapes has a strong influence. The Witton 3 

(azhdarchid) shape produced almost twice the induced drag (93.6% increase) of  the best shape (Bennett 

2007). In part this increase is due to the difference in aspect ratio (8.2 compared to 14.5) but it is also to a 

less efficient shape (e ratio = 11.6% as compared to 2.3% for the best shape, again Bennett 2007). The 

ranking on the basis of  e ratio shows that the highly tapered Witton 2 and Wilkinson (2007) and (2008) 

shapes are amongst the least efficient, while the forward swept Bramwell & Whitfield (1974) shapes and 

the lunate shape are amongst the best. The presence of  the Rhamph 1 form near the bottom of  the scale 

may at first appear inconsistent since it is superficially similar to the Bennett (2007) shape. However, the 

XFLR5 analysis allows interrogation of  the supporting calculations of  the induced drag (Figure 7.10). 

These graphs compare the underlying characteristics of  the Bennett ornithocheirid and Witton 

rhamphorhynchoid shapes with an ideal elliptical shape. The most striking difference is in the proximal 

region, where the induced drag coefficients of  both pterosaur forms are much higher than for the 

elliptical shape, due to the posterior extension of  the membrane to the ankle. This is more marked for the 

rhamphorhynchoid shape and accounts for most of  the increase in the induced drag of  this shape. The 

aerodynamic penalty of  this posterior extension of  the proximal region of  the wing membrane also has a 
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negative effect on the performance of  the azhdarchid and rhamphorhynchoid shapes proposed by Witton 

(2008) and Unwin (2005) respectively.  

 Since these forms do not represent a systematic range of  variations, but reconstructions taken from 

a number of  disparate sources, it is difficult to draw detailed conclusions from these results. In order to 

better understand the effect of  changing morphology, the Bennett (2007) shape was taken as a basis from 

which a range of  related, varied shapes were derived (Figure 7.9 - columns (C) and (D)). The form with 

the most efficient shape is the basic shape modified to have a concave posterior margin and modest 

posterior sweep. It is just 1.5% less efficient than the elliptical ideal. With less sweep the efficiency reduces 

very slightly. Anterior sweep of  the wing results in a 5.3% reduction in efficiency, almost the same as the 

basic shape with an anteriorly projecting propatagium, the shape that corresponds to an anterior pteroid 

orientation (Wilkinson 2008). The least efficient shapes in this series were forms with a 50% increase in 

proximal width (a relatively longer body) and a highly tapered form with large sweep and a straight taper.  

7.4.2 Lunate planform
The pterosaur wing has an obligatory highly tapered planform due to the basic structure of  the 

wing bones and membrane. While there is some evidence (Bennett 2000) of  preserved wings having a 

small, finite width at the tip, the extent is such that the overall wing is still highly tapered (pointed) in an 

aerodynamic sense. The shape is well into the range where it will exhibit a high induced drag due to the 

degree of  taper (Anderson 2007:420). There is however a feasible geometry that may have mitigated this 

disadvantage - a lunate or doubly-elliptical crescent shaped planform found widely in fast swimming 

marine creatures (Figure 7.11) and in many bats (Norbert 2002, Norbert et al. 2003) and some birds 

(Videler 2005). It was first noted in the context of  possible pterosaur wing morphology by Hazlehurst & 

Rayner (1992). As Hazlehurst & Rayner (1992) observed, this geometry both reduces the tendency to tip 

stall and lowers the induced drag, observations that have been reinforced by more recent research, which 

has also shown that ‘lunate’ curvature can be concentrated towards the tip of  the wing and still be 

effective (van Dam 1987, Burkett 1989, Marchaj 1996:95 and 208).

The same XFLR aerodynamic modelling approach as described earlier was used to calculate 

variations in lift along the span of  the wing, in order to analyse the likelihood of  tip stall. Comparison 

between a triangular, tapered wing and the same basic shape but with the distal regions curved anteriorly 

to give a lunate shape were made. In the proximal regions, lift distribution was more or less identical for 

the two geometries, but in the distal tip regions lift distributions deviated significantly from each other 

with the triangular shape showing an increasing lift coefficient right to the tip. In contrast, the lunate 

shape exhibited a maximum lift coefficient followed by significant reduction towards the tip (Figure 7.12), 

confirming that it would be less prone to excessive lift coefficients and thus local stall propagating from the 

tip. This analysis was then extended to more pterosaur-like wing morphologies and further confirmed the 

benefits of  the lunate tip in reducing the propensity for tip stall (Figure 7.13).
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7.4.3 Anterior sweep effects
Next the effect of  anterior sweep on induced drag was investigated using the XFLR5 program. 

With a plain untwisted wing the span efficiency reduced with increasing anterior sweep, suggesting that 

while an anteriorly swept planform may be required for aerodynamic balance, it is disadvantageous in 

terms of  the induced drag ((a) to (c ) in Figure 7.14). Another variation (Figure 7.14 (d)) was investigated 

which represented an anteriorly swept wing where the relatively more elastic proximal regions of  the 

membrane (the cruropatagium between the legs and the membrane that might have been controlled by 

leg movement Kellner et al. 2009) was held at a different angle to the rest of  the wing. Consequently the 

wing sections in this region had reflex - a local reversal in the section camber towards the posterior 

margin. With this reflex applied to the most proximal one third of  the wing, the span efficiency 

approached a value of  one, the highest that is theoretically possible for a planar wing (Figure 7.14).

7.4.4 Leading edge shape
Calculations of  surface strain were used to estimate the bending deflection of  pterosaur wing bones 

(Figure 7.15). While actual wing bone loading cannot be estimated, the possible maximum bone curvature 

can be calculated on the basis of  acceptable maximum strain (Figure 7.15). Using a yield strain of  0.0075 

(the upper limit for bone with a Young’s modulus of  25GPa, Currey (2004)) and a safety factor of  3 

(Kirkpatrick 1994, Palmer & Dyke 2010), the calculated average deflections are 8° for the first and second 

wing phalanges (WP1 and WP2), 10° for WP3, and 12° for WP4. It is also apparent from many fossil 

specimens (Lu & Ji 2005, Lu et al. 2006b, Andres & Ji 2008, Stecher 2008, Kellner et al. 2009, Lu et al. 

2010, Lu 2010, Wang et al. 2010, Dalla Vecchio 2013) that WP4 frequently had natural curvature, 

typically around 15°. These bone deflections (assuming no flexibility in the interphalangal joints) were 

applied to Bennett’s 2007 reconstruction of  Anhanguera santanae (which was in turn modified from Bennett 

(2001)) and also to Wilkinson’s (2008) reconstruction. The result produced wings with increased posterior 

sweep, the opposite direction to that required for aerodynamic balance. However, anatomical 

reconstruction of  bone and joint geometry inevitably contains some imprecision (C. Bennett pers. comm. 

2010) and it is known (Bennett 2001, Kellner et al. 2014) that the pterosaur elbow joint could flex through 

a large angle.

A 5° change in the angle of  the humeroulnar joint and at the wrist results in moderate anterior 

sweep: if  this is combined with a 10° flexure of  the elbow then the forward sweep of  the wing can be 

sufficient to provide aerodynamic balance. An anteriorly swept wing configuration is thus perfectly 

possible within the bounds of  known pterosaur anatomy (Figure 7.16).

7.4.5 Static stability
The movement of  CP with increasing angle of  attack depends on the wing section and the wing 

geometry but, as noted earlier, this typically moves in an anterior direction with increasing angle of  attack 
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for cambered wing section shapes, which is destabilising in pitch. As angle of  attack increases so does the 

lift coefficient and XFLR5 allows the variation of  CP location with lift coefficient to be determined as lift 

coefficient varies (Figure 7.17). This was first calculated for a rigid wing with posterior sweep and the 

analysis conducted for a range of  values of  distal wing twist (washout). As washout increased the curves 

moved bodily in an anterior direction, but also showed a change in the gradient such that by 15 degrees 

of  washout the wing became statically stable in pitch - the centre of  pressure moved posteriorly as lift 

increased. The effect of  the washout is to change the lift distribution along the wing, which causes an 

increase in the induced drag. At 15 degrees twist the span efficiency drops by 15% (Figure 7.18), resulting 

in an increase in induced drag of  15%, which under soaring conditions could represent as much as 10% 

increase in total drag.

However, in response to an increase in lift (resulting, for example, from encountering a gust) the 

natural flexibility of  the wing would in practice cause it to deflect due to changing loading, with the wing 

bones deflecting dorsally and also twisting along their length. This is because the applied lift force is 

posterior to the structural neutral axis of  the wing bones. In consequence, the wing sections would 

experience twist along the length of  the wing such that the posterior margin would rise relative to the 

leading edge, resulting in washout. To model this, the aerodynamic analysis was made for two wash-out 

configurations: 2.5° and 5° washout at the wing tip with on wings with anterior and posterior wing sweep. 

Variation of  CP location with lift coefficient ran almost parallel to that for the rigid wing but was 

displaced in a posterior direction for the anterior sweep and the anterior direction for the posterior sweep 

(Figure 7.19).

This observation is relevant because of  the situation where a flexible, anteriorly swept, wing 

experiences a gust the overall lift coefficient will increase but the twisting of  the wing will off-load the 

distal regions so the total increase is likely to be less than for a rigid wing. Also, since for any given lift 

coefficient the location of  the CP is shifted posteriorly with increasing washout, instead of  CP moving 

anteriorly with increasing lift coefficient (along a line of  constant wing twist), if  the response is correctly 

tuned, it may move posteriorly, conferring passive pitch stability (Figure 7.19). The precise nature of  the 

effect will of  course depend on the flexural response of  the wing and the determination of  this is beyond 

the scope of  this work. However, the fact remains that the above is a possible mechanism by which passive 

static pitch stability might be achieved as a result of  the natural flexibility of  the wing. This possibility, that 

wing flexibility actually can provide pitch stability, was first proposed by Sneyd et al. (1982).

This current application of  vortex lattice code shows that it is possible to investigate the likely effect 

and to confirm a possible mechanism. It is also well worth noting that the opposite effect is true for a 

posteriorly swept wing – wing flexibility reduces pitch stability, casting doubt on the applicability of  

stability analysis based on aeronautical flying wing experience (which are for practical purposes rigid 

wings) and reported in Wilkinson (2008).
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7.5 Summary 
By their very nature, pterosaur wings were tapered mediolaterally and consideration of  the 

requirement for the membrane to be everywhere in tension means that the posterior, free margin was 

concave. Membrane tension is required in order to suppress aeroelastic flutter and consideration of  the 

structural strength of  the wing bones indicates that the tension was directed mediolaterally, following the 

orientation of  the aktinofibrils and confirming their role as structural reinforcing fibres.

While basic aerodynamic analyses show that highly tapered, straight wings (with a triangular 

planform) generate high levels of  induced drag and are prone to tip stall, more sophisticated analysis 

using a vortex lattice approach shows that lunate shapes, which combine taper to a sharp, pointed tip with 

a concave posterior margin and moderate posterior curvature can actually be as efficient as shapes that 

are close to the so-called ideal elliptical shape. Lunate shapes also induce lower lift coefficients towards the 

tip, so are less vulnerable to tip stall. Analysis of  the possible surface strain on the wing bones loaded by 

the membrane tension show that the distal bones are subject to substantial deflection and as a result allow 

the wing to take up a lunate shape, suggesting that in practice pterosaur wings could be aerodynamically 

efficient despite the obligate taper to the membrane shape.

The vortex lattice modelling also shows that reduction in body length:arm length ratio is doubly 

beneficial. It increases aspect ratio and reduces the adverse effects of  the wide proximal regions of  the 

membrane. Consequently the ornithocheirid bauplan was superior to the rhamphorinchoid (and 

azhdarchid) in terms of  induced drag and thus aerodynamic efficiency, supporting the view that the 

former were open ocean foragers, very reliant on sustained soaring flight. For similar aerodynamic 

reasons, a wing with an anteriorly projecting pteroid and a very wide propatagium has a reduced 

aerodynamic efficiency, although this effect can be reduced if  the proximal wing sections are reflexed, a 

shape that might have been achieved by appropriate flexing of  the legs. 

The basic mechanical need for the CM and CP to be coincident in steady flight imposes limits to 

the relative positions of  wings and body and points to a requirement for anterior wing sweep. This 

requires an anterior centre of  mass - which might explain long necks. 

For passive pitch stability in the absence of  a tail, posteriorly swept wings require wash-out, which 

greatly reduces the aerodynamic efficiency, typically resulting in a 18% induced drag penalty. In contrast, 

anterior sweep and wing tip twist results in a small efficiency loss (about 5%), but confers pitch stability 

provided that the wings are flexible and responsive to gust input.  

This examination of  the various constraints on wing reconstruction provides predictions for actual 

wing shape reflecting the mechanical and physiological demands of  flight, which place a great premium 

on aerodynamic and structural (weight) efficiency. If  these were the significant evolutionary drivers then 

the foregoing provides many new insights into pterosaur wing performance and morphology.
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Chapter Eight

Limits to size

8.1 Effects of scaling
The maximum possible size of  animals has long been a source of  fascination for scientists and the 

wider pubic alike. Giants abound in folk-lore and gigantism is a much debated topic of  biology and 

palaeontology. A typical example of  the latter is Alexander (1998), entitled “All time giants: the largest animals 

and their problems”. The subtitle is revealing in suggesting that giant animals face problems, which, by 

inference, ultimately limit their potential size. As Alexander (1985, 1998) and others have shown, these 

problems are a direct result of  scaling effects, which influence the effects of  size in all animals and indeed 

man-made structures (see Liu 2006 for a comprehensive overview).

It is also important to bear in mind that animal size is clearly a response to adaptive, complex and 

multifaceted evolutionary pressures (Biewener 2005, Sander et al. 2011, Habib 2013) and so even if  a 

particular body plan has the potential for large size, for evolutionary reasons there is no absolute 

requirement that real animals will actually grow to that size. However, estimating the maximum potential 

sizes so as to place limits on what was possible and determine whether giants were constrained by 

mechanical or other limits can provide useful evolutionary and functional insights

The questions to be addressed herein are, what are the physical constraints on size and 

consequently what could be the maximum size of  pterosaurs, assuming gigantism confers an adaptive 

advantage. The approach will start with a review of  published work on flying vertebrates, carried out 

mainly on birds and then by analogy and example apply the conclusions to gigantism in pterosaurs.

As long ago as 1638, Galileo noticed that the bones of  large animals were more robust than those 

of  smaller animals, in other words that as animals increased in size their proportions changed. It is not 

possible to scale up a mouse to the size of  an elephant and retain the same proportions: due to the way 

that strength scales, mouse legs on an animal the size of  elephant would be impossibly weak.

This scaling is not simply a feature of  biological systems, it is equally well established in engineering 

where it is more commonly known as the “square cube law”, a name reflecting the fact that as a body 

increases in size the volume increases as length cubed whereas the area only increases as the length 

squared. Since, in very general terms, loads are related to mass, and therefore volume, and strength to 

area, it follows that geometrically scaled shapes become weaker as they become larger if  they are simply 

scaled geometrically. Geometric scaling is also referred to as isometry, which is a special case of  the more 

generalised allometric relationships that reflect changes in morphology with size (Alexander 1985). 
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Isometry, as it applies to natural systems was very eloquently described by Haldane (1926) in his essay “On 

being the right size”, where amongst other things he pointed out that as the size of  a flying animal or indeed 

aeroplane increases, the power required to fly increases more rapidly than the weight. Since the power 

available is proportional to the weight, these trends converge and where they come together sets the upper 

limit to practical size.

8.2 Power as a limit to size
This concept of  the convergence of  the two trends has been invoked on other occasions 

(Pennycuick 1996, Sato et al. 2009, Norberg & Norberg 2012), but there is still considerable debate about 

the maximum practical size of  flying vertebrates. For example, Pennycuick (1996) concluded on the basis 

of  power required and power available that the maximum size of  a bird which can undertake sustained 

flight is around 15kg and was sceptical of  claims of  the flight capabilities in much larger birds. However, 

Chatterjee et al. (2007) suggested that while the 70kg Argentavis may not have been capable of  sustained 

flight, it could have flown using anaerobic power for long enough to secure lift from rising air. Similarly, a 

recent analysis of  Pelagornis, a 35kg, 7m wingspan seabird from the Oligocene (Ksepka 2014) used 

Pennycuick’s FLIGHT program (Pennycuick 2008) to calculate that this bird was likely capable of  

sustained flight. 

The situation is no clearer when it comes to estimates of  the maximum size of  pterosaurs. While no 

one appears to doubt that the 6 m to 7 m wingspan Pteranodon was a capable flyer (Bramwell & Whitfield 

1974, Bennett 2001, Strang et al. 2009, Witton 2013), there is less consensus on the flight capabilities of  

the largest azhdarchids, which might have reached 10m wingspan or more, with body masses in excess of  

250kg (Chatterjee & Templeton 2004, Sato et al. 2009, Witton & Habib 2010, Habib 2013).

If  the determination of  maximum size is a matter of  finding the crossover point between two 

convergent lines, why is there such a range of  opinion as to where this crossover occurs? Conceptually 

there are two different factors at play, one is the gradients of  the lines and the other their position relative 

to one another, as illustrated in Figure 8.1 for isometric scaling. Consider first the gradients of  the lines. 

Schmidt Nielsen (1984) noted that in practice the scaling of  birds deviates from strict isometry and is 

more generally allometric. The result of  this deviation, according to Schmidt Nielsen (1984), is that the 

power required for flight is directly proportional to body mass, although he noted that the power available 

scales at a lower power meaning that the two relationships do still converge, but differently from the 

isometric scaling. Alexander (1998) also suggested, on the basis of  constant sink rate, that the power 

required for steady flight was directly proportional to the mass of  the animal. However in a much more 

recent study prepared from an aeronautical perspective, Liu (2006) examined the scaling of  small fliers 

(birds and bats) and concluded that the power required varied as body mass to the power of  1.17 and 

power available as body mass to the power of  0.97 assuming a constant muscle mass specific power 

output of  141W/kg (Weis-Fogh 1977). Using this relationship he predicted that the upper size for a 
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practical bird would be between 165 ±102N, the wide range resulting from the inclusion of  many 

different bird species, a key point that will be discussed below. However this result was calculated using the 

required power at maximum range speed, which is higher than the speed at minimum power. Reworking 

the calculation using the minimum power required for flight increases the weight range to between 

313±102N.

Greenewalt (1975) undertook a comprehensive analysis of  the morphometric parameters of  birds, 

which he grouped by behaviour and lifestyle and presented as bivariate plots, for example a relationship 

between total weight and wing area. Using units of  grams and centimetres he retrieved a power law 

relationship with a gradient of  1.28 for these parameters. This gradient applied not only to the average of  

all the birds in the sample but also to the linear regression lines through the various subsets, resulting in a 

series of  parallel lines separated vertically, and the separation was substantial. At the extremes, the 

intercept for his shorebirds grouping line was 0.044 and for ducks 0.08, a difference of  almost a factor of  

two.

Using the various relationships which he established, Greenewalt (1975) derived an aerodynamic 

analysis to calculate the minimum power required for flight. The exponent of  the variation of  power 

required with mass was very slightly less than one (typically around -0.003 as compared to 1.17 for 

isometric scaling), but as in the case of  the relationship between weight and wing area, there was 

substantial difference in the intercepts of  the different morphological groupings. The effect of  this was 

that the predicted specific power requirement for the wandering albatross was half  that of  the similarly 

sized great bustard. Greenewalt (1975) did not use his analysis to try to make a prediction of  the 

maximum size of  birds and concerned himself  more with the power required to fly than with the power 

available. However he did provide information on the flight muscle mass (the “engine” of  the bird) and 

his data showed that as a fraction of  total mass it reduced slowly with increasing mass (exponent -0.033), 

but with a constant that varied between 0.15 and 0.28, equivalent to flight muscle mass fractions between 

12% and 22% for 1.0kg bird, representing almost a factor of  two difference in available power. 

Consequently, at the extremes of  his data sets, the power required varies by a factor of  two as does the 

power available, implying possibly a four to one range in the ratio of  power available to the power 

required.

In the time since Greenewalt (1975) undertook his study a great deal has been learnt about muscle 

power output and there is reasonable consensus (but see later for more detail and relevant references) that 

a sustained power output in excess of  100W per kilogram is achievable. The variation of  this output with 

muscle mass and bird size is poorly understood and a matter of  discussion (again see later), but clearly if  it 

is a constant value and Greenewalt (1975) and others (e.g. Alexander 1998, Schmidt Nielsen 1984, 

Ellington 1991) are correct in the view that due to allometric effects the power required for flight in birds 

is directly proportional to the body mass, or maybe even slightly negatively correlated, then there is in 
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practice no crossover between power required and power available, rendering this approach to 

determining the maximum size of  birds, and by extension other flying vertebrates, doomed to failure.

In contrast, the analysis presented in Pennycuick (1996) uses this approach and appears to result in 

a relatively tightly defined upper estimate of  size. Pennycuick (1996) used results from his bird database 

and FLIGHT program (Pennycuick 2008) to calculate the power required by birds. He retrieved the 

relationship that power required varies with mass to the power of  1.167, in common with the isometric 

approach. Where his analysis differs is in the estimation of  available power. Pennycuick (1996) argued that 

muscle strain is a constant (25%) and that there is an upper limit to the stress in muscle fibres. Therefore it 

follows that there is an upper limit to the work that muscles fibres can do (the product of  force and strain) 

and Pennycuick (1996) calculated this to be 57J per kilogram. As power is the rate of  doing work, muscle 

power is the product of  work and flapping frequency. Pennycuick (1996) used the results of  his own 

regression analysis (Pennycuick 1990) for the calculation of  the flapping frequency as a function of  mass, 

wingspan and wing area and calculated the ratio between power required and power available for the 

birds in his database and plotted the results against body mass. The definition of  the ratio is such that the 

level at which the ratio exceeded unity sets the upper limit to the size of  bird that can undertake sustained 

flight. Pennycuick (1996) The crossover of  the standard major axis regression line through the data 

occurred at a mass of  around 15kg, (close to the observed upper limit of  mass of  extant birds). This figure 

is reproduced in Figure 8.2.

8.3 Not an average bird
This conclusion is based on the projection of  the regression line through the data and as such 

represents the maximum size of  a notional “average bird”. As Greenewalt (1975) and Alerstam et al. 

(2007) have shown, the range in values of  a dataset such as that which Pennycuick (1996) used is not so 

much scatter in the sense of  inaccuracies in the data points, for which the use of  a regression line would 

be appropriate, as variation between but many different, consistent morphological datasets overlaid on 

each other. Consequently, the variations in the data points captures real differences between birds of  

different morphologies (which may reflect functional as well as phylogenetic differences), so it is instructive 

to fit a series of  lines to the data, reflecting these differences and thus investigating the effect of  

morphology on the potential maximum size. As Greenewalt’s (1975) data showed, it is very likely that 

these lines will be parallel to one another (though further work is required to confirm this view) . However, 

if  this suggestion is correct and in the case of  Pennycuick's (1996) data upper and lower boundary lines 

are drawn parallel to the his regression line, the cross over points for the limiting power ratio occur at 

body masses of  2kg and 100kg respectively. 

Thus the maximum size that can be achieved by a bird is dependent not only on the allometry of  

scaling but also the underlying “prototype” or morphology. Some birds are simply better starting points or 

prototypes for scaling up that others - in other words they have fundamental morphological characters 
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that have the potential to allow them to reach large size if  that is a beneficial evolutionary trajectory. From 

Pennycuick’s (1996) data it would appear that Charadriiformes are amongst the best prototypes for large 

size. Greenewalt’s (1975) results also place the Laridae in this category, as well as the specific species 

Fregata aquila and Diodmedia exulans, which share many morphological similarities with Pelagornis sandersi (an 

extinct giant bird of  the Oligocene, which is thought to have reached at least 6.4m in wingspan and 

weighed as much as 400N (Ksepka 2014)).

Overall morphology is not the only potential cause of  variation in the predicted maximum size 

from Pennycuick's (1996) approach. He does not state the assumed flight muscle mass fraction explicitly in 

the paper, but clearly a “prototype” with a high flight muscle mass fraction can reach potentially larger 

size. Similarly there are other formulations for flapping frequency (Rayner 1988, Taylor et al. 2003) and 

reason to believe that in large birds the frequency may tend towards mass to the power of  0.167 (Rayner 

1988), which would reduce the gradient of  Pennycuick's (1996) data points and thus result in even higher 

prediction of  maximum size. The limitations of  drawing conclusions from single linear regression lines 

through data derived from many different species are discussed in great detail and sophistication by 

Taylor & Thomas (2014). 

Marden (1994) adopted a different approach based on the results of  studies that determined the 

maximum weight that birds and bats can carry and still manage to take off. He demonstrated that the lift 

force per unit mass was constant with size, but that the power required to generate this lift increases with 

size, creating another analysis with convergent trends that can potentially be used to estimate maximum 

size. Marden (1994) argued that the specific power available from flight muscle is a constant 100W per 

kilogram because the work loop is not constant but expands with reducing frequency, thus resulting in a 

constant power output. Using this data he projected that at a muscle mass specific power of  100W per 

kilogram the largest body size can be no more than an improbably low value of  0.1kg. However he also 

noted that under anaerobic burst conditions the muscle mass specific power available was much greater 

(around 225W per kilogram). When this value was used, his analysis resulted in an asymptotic relationship 

rather than a crossover between two trends and implied that even a 250kg Quetzalcoatlus would be capable 

of  flight.

This is therefore another approach which is not helpful in establishing upper limits to size since 

depending upon the starting assumptions, the maximum size projected ranges from 0.1kg to no limit. The 

result for sustainable flight predicts an upper limit of  only 0.1kg, a value which is clearly confounded by 

even casual observation of  bird flight. In the case of  burst flight the asymptotic nature of  the relationship 

does not define an upper limit though it does give some support to the view that the largest azhdarchid's 

were capable of  leaving the ground. 
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8.3.1 Quantifying power required
It appears that the reason Marden's (1994) analysis gives such a low value for the mass of  sustained 

flight is that his data is based on takeoff  power, which he argued was also the minimum power. He 

recognised that in theory birds should have a U-shaped power curve but maintained that there was little 

experimental evidence to support this view. If  this were the case, it would be very difficult to reconcile 

with the experience of  aircraft since it is well known that helicopters require a great deal more power to 

take-off  vertically than a fixed wing aircraft of  the same weight does to take off  from a runway. 

In the intervening years new experimental techniques have been developed (Hedrick et al. 2003, 

Tobalske 2007, Jackson et al. 2011, Robertson & Biewener 2012) that have demonstrated quite clearly that 

real power curves are indeed U-shaped, although close correlation between experimental results and 

theoretical predictions remain elusive (Tobalske 2007, Morris & Askew 2010). In fact, these results 

typically show that the takeoff  power can be as much is twice the minimum power required for steady 

flight, a difference which will clearly have a profound effect on Marden's (1994) conclusions regarding 

sustained flight.

8.3.2 Power available
A critical factor in all the foregoing analyses is the value of  the muscle mass specific power. At one 

extreme are Pennycuick's (1996) arguments that muscle mass specific work is constant and therefore the 

power must vary as flapping frequency, consequently with a negative exponent of  mass. Ellington (1991) 

presented experimental data which challenged this view and suggested that the results lay between 100 

and 200W/kg, with a tendency to increase slowly with the total body mass. He argued that if  the 

exponent for available power was approximately unity, the comparison of  available power and required 

power could not be used to set the upper limits to the mass of  flying vertebrates. He suggested that the 

reasons for the limits were perhaps to be found in limits to takeoff  capability, which arose from reductions 

in aerodynamic performance (specifically maximum lift coefficient) with increasing size, but left this 

simply as a speculation. Later work by Askew et al. (2001) concluded that in the size range up to at least 

5kg, muscle mass specific power during short bursts was constant with body mass. Thus taking a 

conservative lower bound, one possible value is a constant 100W/kg.

Since the early 90s (Biewener et al. 1991, Dial & Biewener 1993 for example) it has become possible 

to make reliable measurements of  the in vivo power output of  muscles and data is available over a limited 

range bird sizes. The largest birds for which reliable steady power output levels have been measured are 

1kg mallards (Williamson et al. 2001), for which a value of  between 100 and 200W/kg was recorded. On 

the basis of  experiments with corvids ranging in size from 0.07kg to 0.9kg, muscle mass specific work 

scales with positive allometry, with an exponent of  between 0.11 and 0.18 (Jackson & Dial 2011) and 

consequently muscle mass specific power scaled with only a small negative exponent. (-0.18 or less). These 

authors note that: “These empirical results lend minimal support to the power-limiting hypothesis, but also suggest that 



74

muscle function changes with size to partially compensate for detrimental effects of  size on power output, even within closely 

related species. Nevertheless, additional data for other taxa are needed to substantiate these scaling patterns”. (Jackson & 

Dial, 2010, p452)

Extreme extrapolation of  these relationships is however problematic because they imply that either 

the stress in muscle fibres increases continuously and/or that the strain does so as well. Clearly there will 

come a point at which these become impossibilities and the scaling will tend more towards the exponents 

proposed by Pennycuick (1996). 

The foregoing review shows that the power required versus power available approach to 

determining the limits to size of  birds, and by extension, other flying vertebrates, is extremely 

problematic. Even with scaling assumptions that result in the largest differences between the exponents of  

the two relationships, the point at which crossover occurs is very sensitive to the underlying assumptions. 

At the other extreme, where scaling assumptions imply there is no convergence between the trends, cross 

over simply does not occur. It is also clear that the starting point for the scaling matters. As noted above, 

“Average birds” are not the best prototypes: some body plans are better starting points for large size than 

others.

8.4 An alternative approach
Against this background, is there an alternative approach that can be used to estimate the 

maximum size of  pterosaurs? For these animals we have, when compared to birds, comparatively poor 

behavioural and phylogenetic data sets, so trends extrapolated from scatter plots of  morphological data 

are even less likely to be useful than for birds. Consequently, noting that the starting point is important, an 

alternative approach is proposed. Take a well documented “prototype” and produce scaled up, “in silico” 

versions using established allometric trends and mechanical constraints. The properties and performance 

of  these specific scaled up individuals can then be calculated, making it possible to examine more aspects 

than simply the comparison between sustained power and available power. Since fossil evidence points to 

the azhdarchids being the natural “models” for pterosaur gigantism, the morphology of  this group was 

adopted for the study.

As size increases, allometry dictates that structural loading will increase disproportionately and 

consequently either stronger materials or proportionately larger structural members will be required. 

Clearly in nature only the latter option is possible, so the increasing size of  structural members like the 

wing spar may have a detrimental effect on overall mass and perhaps aerodynamic performance. The 

allometric scaling of  kinetic energy also works against increasing size, making safe landings increasingly 

problematic. These are potential limits that can be examined for individual “designs” more readily than 

by adopting a generalised, parametric approach. And lastly, even if  an animal is strong enough to fly and 

to land safely and has the power required for sustained flight, it has to be able to get into the air. Take off  

can be onerous. Airspeed is low and consequently the power requirements are increased, albeit 
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temporarily, and once in the air the animal requires sufficient excess power to gain height and fly for 

sufficiently far to escape predation and/or find lifting air to keep it aloft.

8.5 Modelling azhdarchids in silico

8.5.1 Overview
The following sections develop a range of  scaled azhdarchid “designs”, selecting the best available 

data from the fossil record to establish an initial prototype, which is then scaled and adapted to reflect the 

known morphology of  azhdarchids. Calculations were made for scaling from 6m to 9m and 12m 

wingspan (Table 8.1). The 6m ornithocheirid wing model described in Chapters 3 and 4 was taken as the 

starting point and scaled  to consistent structural strength to withstand the imposed aerodynamic loads 

(see Section 8.5.2 for more detail). In each case the resulting aerodynamics characteristics were calculated. 

This data was then used to predict the performance of  these individuals in terms of  cruise power, landing 

dynamics and take-off  dynamics (as described in Sections 8.5.3 to 8.5.5. In the case of  cruise power, the 

power required was compared to the power available for a range of  assumptions regarding muscle mass 

specific power and flight muscle mass fraction, for landing the ability of  the skeleton to absorb energy was 

compared to the kinetic energy at touch-down speed and for take-off  the power available was used to 

calculate the leaping dynamics and thus the ability to leave the ground and take to the wing. 

Table 8.1 Calculated azhdarchid dimensions

8.5.2 Scaling of structural strength
The strength of  the bones in the wing, the wing spar, was selected as the variable to be scaled from 

6 m to the 9m to 12 m size range. The reason for this choice was that in the case of  pterosaurs the 

forelimbs are the structures that bear the brunt of  not only the aerodynamic loading but also the loading 

on takeoff  and most probably landing. Two limiting criteria were set, first that the deflection of  the tip of  

the wing should be a constant percentage of  the wingspan and second that the surface stress on the most 

highly loaded bones should not require a factor of  safety of  less than three (Kirkpatrick 1994 and Palmer 

& Dyke 2010). The baseline data was obtained from the large ornithocheirid wing spar described in 

Chapter 4. While this is not a perfect representation of  an equivalent azhdarchid wing spar, with 

presently available data it is not possible to create such a wing spar in the same manner as was achieved 

Span 
(m)

12.00
9.00
6.00
3.00
2.00

Weight 
(N)

4,653
2,098
683
100
33

Wing area 
(m2)

18.06
10.04
4.39
1.07
0.47

Wing loading 
(N/m2)

258
209
156
94
70

Flight speed 
(m/s)
17.5
15.8
13.6
10.6
9.1
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for the ornithocheirid. However, as will be seen later in this section, the results that are particularly 

sensitive to the assumed wing bone morphology (mainly the aerodynamic performance was affected by 

the change in wing airfoil as the wing bone diameter to wing chord ratio varies and the wing skeletal 

mass), did not prove to be strong limiting factors.

Witton (2008) estimates that the mass of  azhdarchid pterosaurs is, for a given wingspan, 

considerably greater than for the ornithocheirids. The body mass of  azhdarchids scales as 8.52 b2.52 

whereas for ornithocheirids the relationship is 4.42 b2.43 (Witton 2008). The structural properties of  the 

wing spar (specifically second moments of  area in the dorsoventral plane) were therefore scaled to be able 

to resist the increased loading that would result from the azhdarchid body plan. As noted above, two 

different constraints were applied, firstly that the tip deflection should remain a constant fraction of  the 

wingspan and secondly that the surface stress on the most highly loaded sections of  the wing bone should 

remain constant. In order to make these assessments it was assumed that the cortical thickness remained a 

constant fraction of  the depth of  the wing bone section. This is of  course a somewhat arbitrary 

restriction, but it has practical support in that thin-walled tubes are susceptible to earlier failure due to 

local buckling if  the wall thickness is below a critical level which is related to the ratio of  the wall thickness 

to the diameter as discussed in more detail in Chapter 4. Consequently, keeping this value constant would 

ensure that the heavier and larger scaled up wing spars retained the same resistance to buckling failure.

The bending moment on the wing spar is directly proportional to lift generated by the wing which 

in turn is directly related to the total body mass. The resistance to bending of  the structure depends on 

two parameters, the Young’s modulus of  the material and the second moment of  area of  the cross-section 

(see Chapter 4 for more detail). For structures made from bone it can be assumed that the Young’s 

modulus remains constant and thus the bending resistance is determined only by the second moment of  

area. Since this varies with the fourth power the linear dimensions, a relatively small increase in size 

produces a very large increase in second moment and thus bending stiffness. However the surface stress 

that results from the application of  the bending moment depends not only on the second moment of  area 

but also the linear depth of  the section. Applying these approaches to the critical region of  the first wing 

phalanx where the surface stress was greatest (see Figure 5.5) showed that it was surface stress rather than 

tip deflection which was the limiting factor. So, perhaps slightly counterintuitively, as the models became 

heavier and larger the tip deflection actually reduced as a proportion of  wingspan because of  the 

constraint to maintain the same maximum surface stress. The results are summarised in Table 8.2.

Table 8.2 Wing spar scaling results using Witton (2008) mass estimates
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There were two allometric trends revealed from the scaling of  the different sized models that might 

be expected to have effects on their relative performance. Firstly the depth of  the wing bone section 

increased more rapidly than the wing span and therefore wing chord. The scaling exponent was 1.16. 

However because the azhdarchids have lower aspect ratio wings than the ornithocheirid pterosaurs 

(Witton 2008), the ratio of  the section depth to the wing chord was proportionally greater than for 

ornithocheirids. Since the wind tunnel tests (see Chapter 2) showed that the higher this ratio the better the 

aerodynamic efficiency of  the wing sections, it will be better in azhdarchids than in ornithocheirids. Thus 

although with increasing size there is a weak tendency for this ratio to become larger, the starting point 

was favourable due to the large wing chord relative to the wing bone diameter, so it did not prove to be a 

large (and therefore potentially size limiting) effect as will be shown in the aerodynamic analysis.

The other effect of  the scaling was a disproportionate increase in the cortical area and thus wing 

skeletal mass with size. The scaling exponent with mass was 1.3. This is to be compared with an exponent 

of  1.07 found for the scaling of  the total skeletal mass in birds (Prange et al. 1979) (noting also that this 

skeletal mass scaling was the basis of  the Witton (2008) body mass estimates).  For birds and mammals 

Prange et al. (1979) showed that the skeletal mass was typically around 6 to 8% of  total body mass, which 

is also implicit in the Witton (2008) mass estimate for pterosaurs. Consequently the scaling of  the wing 

spar bones with a slightly greater exponent than the rest of  the skeleton will only have a small effect on 

total body mass. The effects of  these uncertainties will be discussed in more detail in relation to the 

analysis of  the other proposed constraints on size.

The preceding analysis suggests that the structural performance of  the wing spar is not a significant 

limitation to size. Even at 12m wingspan the required section depth is not excessive from the point of  view 

of  aerodynamic performance and the mass of  the wing bone material not greatly out of  proportion with 

the overall mass of  the animal.

Using the information obtained from the foregoing analysis it is possible to make estimates of  the 

aerodynamic performance of  the three different models. This then provides a baseline from which the 

power required for level and climbing flight can be determined.

8.5.3 Parametric analysis of flight power requirements
Before undertaking such a detailed analysis, it is instructive to make a simpler parametric analysis to 

understand the likely boundaries of  the results. When a flying animal is gliding, the angle of  descent 

depends directly on the ratio of  lift to drag (Vogel 1994:254), the gliding angle being the inverse tangent 

of  this ratio. Thus to achieve level flight, a thrust is required that exactly balances the drag force and 

consequently the power required is the product of  thrust (=drag) x flight speed. 

In practice, the position is a little more complex in that the flapping action of  the wing increases the 

speed of  the airflow over the wing surface, resulting in an increase in profile drag. In addition, some 

power is required to overcome the inertial losses. However, in cruising flight the flapping frequency of  a 
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large pterosaur will typically be around 1Hz and the flapping angle around 40 degrees (Strang et al. 2009) 

which equates to a tip amplitude of  0.17m and thus a flapping velocity of  around 0.34m/s. This is clearly 

small compared to the likely forward speed of  15m/s, so the increased local flow speed is in fact very 

small, meaning that any increase in profile drag can be ignored.

The estimation of  inertial power is more complex. Application of  the methodology proposed by 

Salehipour & Willis (2012) predicts a value of  approximately 15% of  thrust power whereas van den Berg 

& Rayner’s (1995) approach gives a value of  around 10%. However, both approaches ignore any possible 

kinetic energy recovery, which would reduce the inertial power requirement. In the face of  this 

uncertainty, inertial power will be ignored for the purposes of  this analysis. 

The aerodynamic thrust power is less than the applied muscle power since there will be losses due 

to the propulsive efficiency, which will always be less than unity. Typically for flapping flight in the efficient 

regime (Strouhal number around 0.2 to 0.4 Nudds et al. 2004) the efficiency can be as high as 75% (Liu 

2007, Strang et al. 2009). Consequently the applied muscle power = thrust power/0.75.

The likely L/D ratio of  giant azhdarchids will be calculated in detail later, but measurements on 

birds gives results of  around 8 to 12 for comparable aspect ratios (Alexander 2002:40, Tennekes 1997:83, 

Pennycuick 2008:194). 

The flight speed can be readily calculated from the assumed lift coefficient. The wind tunnel tests 

described in Chapter 2 showed that for pterosaur type membrane wing sections the best lift:drag ratio is 

obtained at a lift coefficient of  around 1.4 (substantially higher than for birds.) Taking this value, the speed 

can be calculated and using the propulsive efficiency described above, the required muscle power can be 

calculated for animals of  any size. 

The available power depends on two parameters, the total mass of  muscle that can be recruited to 

power flight, the flight muscle mass (FMM) and the muscle mass specific power (MMSP). In birds, the 

proportion of  muscle mass devoted to powering flight, the flight muscle mass fraction (FMMF), ranges 

from 10% to 30% (Greenewalt 1975, Pennycuick 2008:364, Heers & Dial 2014). In birds the flight 

muscles and the leg muscles are separate modules (Gatesy & Dial 1996) with the result that, depending on 

behaviour, there has to be a trade-off  between the two (Heers & Dial 2014). However for pterosaurs the 

picture is not so clear cut since they use the forelimbs not only for flight but to make a major contribution 

to take off  (assuming they use a quadrupedal launch (Habib 2008)). For birds the muscle mass devoted to 

the legs can be as much as 15% or more (Heers & Dial 2014) and while it is impossible to be sure of  how 

the trade-off  splits for pterosaurs, it does not seem unreasonable to propose that the upper level of  the 

flight muscle mass fraction could be as high as 40% since a lower proportion of  leg muscle is required as 

compared to birds.

If  it can be assumed that the ratio of  burst to aerobic power is constant, then a constant upper 

bound for aerobic power of  between 100 and 200W/kg can be expected to apply for body mass up to 5kg 
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(see Section 8.3 for sources). Further, if  it assumed that for increasing mass the frequency dependent 

scaling applies, then the muscle power can be calculated for any body size. Values for power required for 

notional azhdarchid models ranging from 3m to 12m wingspan (see Table 8.2 for details) were calculated 

for L/D values of  8 and 12 (using the simple approach described above) and used to determine the flight 

muscle mass fraction for a constant muscle mass specific power of  100W/kg and for the specific power 

varying with flapping frequency as described earlier. 

The results are shown in Figure 8.3 where the flight muscle mass fraction is plotted against 

wingspan. It is immediately apparent that the assumed limits result in a wide “map” of  results. For 

example, at one extreme a FMMF of  only 20% is required for a 12m span with L/D=12 and constant 

100W/kg specific power, whereas for L/D=8 and specific power that reduces with size, and FMMF of  

more than 50% is required at 12m wingspan. Or examined another way, if  it is assumed that the upper 

limit of  FMMF is 40%, then the maximum size of  azhdarchid capable of  level flight is at least 8m wing 

span, but in excess of  12m for the most favourable combination of  assumptions. 

A more detailed calculation of  flight performance (using wing section data that reflected the wing 

bone depth to wing chard ratios found above) gave a L/D ratio of  8.4 at 3m span increasingly a little to 

8.5 at 12m span, placing azhdarchids at the lower end of  the range of  the analysis above (and on a par 

with many birds (Pennycuick 2008)). However, it is apparent from Figure 8.3 that even with this refined 

data the approach is unlikely to provide a highly bounded value for the upper limit to size since the 

muscle mass specific power and, to a lesser extent the flight muscle mass fraction are unavoidably subject 

to considerable uncertainty. In almost all cases the maximum size appears to be well in excess of  10m 

wing span.

8.5.4 Landing
A detailed mathematical description of  the landing dynamics of  pterosaurs is problematic, indeed 

such a description has not yet even been attempted for extant birds. However, observation of  bird 

behaviour shows that large birds in particular tend to land by slowing their flight as much as possible 

(perhaps by extending their legs and tails as air brakes) then pitching up at the last moment, using a 

dynamic stall to come to a halt. If  there is no wind they may also flap their wings briefly, but in many 

instances when landing into wind they simply hold their wings steady. 

Using a time stepping calculation and estimated aerodynamic characteristics for the wings (Figure 

8.4: based on data in Carruthers et al. 2009 and Palmer 2010) it is possible to model this as a dynamic 

process where the wings are not flapped. Typical output is shown in Figure 8.5. Modelling was 

undertaken for a range of  different large birds (see Table 8.3) and the 6m, 9m and 12m pterosaur models 

described above in Table 8.1. 
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Table 8.3 Birds used to model landing dynamics

The results (Figure 8.6 and Figure 8.7) showed that the forward speed could be reduced for landing 

to 5m/s or less for large birds with low wing loading (pelican, condors etc) increasing to 6m/s for more 

highly loaded geese. The most heavily loaded, large birds such as swans gave much higher landing speeds 

(8m/s), which is presumably reflected in the swan’s preference for water landing on a long runway and the 

albatross’ preference for cliffs which provide a strong headwind. 

Since a large pterosaur is most likely unable to land on water (Hone & Henderson 2013), this 

landing adaptation cannot be assumed. However, the simulated 6m, 9m and 12m azhdarchids had 

landing speeds of  4.8m/s, 5.7m/s and 6.2m/s respectively (scaling as span0.373), well within the range for 

birds that do not rely on water or headwinds to facilitate landing.

Safe landing is not simply a matter of  landing speed. It is also depends on the ability of  the 

structures involved to absorb the impact (kinetic) energy. Kinetic energy varies as mV2, so for isometric 

scaling it varies as m4/3. Strain energy is a function of  the maximum material stress, the Young’s modulus 

and the volume of  material. Thus if  the material (bone) does not change (as it cannot for animals) then 

strain energy varies as structural volume, a proxy for which is bone volume, or mass assuming constant 

density. Consequently it is apparent that kinetic energy scales more rapidly than strain energy, so 

proportionately, larger animals either need more bone volume or to move more slowly than smaller ones 

in order to retain the same resistance to impact. This effect is graphically illustrated by J. B. S. Haldane’s 

famous observation that “You can drop a mouse down a thousand-yard mine shaft and, on arriving at the bottom, it gets 

a slight shock and walks away. A rat is killed, a man is broken, a horse splashes.” (Haldane 1926:1).

Since skeletal mass scales as m1.07 (Witton 2008) the strain energy actually scales as m1.07. For impact 

energy to scale at the same rate, speed must scale very weakly as m0.07. Consequently since as Figure 8.6 

shows, large slow flying birds such as White Pelicans and Californian Condors weighing up to 10kg can 

land safely at 5m/s, the safe landing speed of  a 100kg individual would be 5.9m/s and 6.6m/s for a 

500kg individual using this scaling. 

Bird

Answer 
albifrons

Ciconia ciconia
Branta 

canadensis
Pelecanus 

onocrotalus
Gymnogyps 
californianus
Cygnus olor

Common name

White fronted goose

Stork

Canadian goose

White pelican

Californian condor

Mute swan

Mass (kg)

2.58

3.43

3.63

8.50

9.50

10.60

Wing area 
(m2)

0.184

0.533

0.372

0.960

1.32

0.65

Source

Alerstram et al. 2007

Alerstram et al. 2007

Alerstram et al. 2007

Alerstram et al. 2007

Campbell & Tonni 1993

Alerstram et al. 2007
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If  this scaling can be taken to apply to pterosaurs, then the calculated landing speeds for individuals 

of  up to 12m wing span (474kg) fall under this limit, so based on this relatively simplistic analysis at least it 

appears that landing loads may not limit the size of  giant pterosaurs of  up to 12m wingspan. However, 

since the scaling of  calculated landing speed is higher than the safe landing speed, there will be a cross-

over that will determine the size at which the landing speed becomes unsafe. With the exponents found in 

this study it is around 15m wingspan.

8.5.5 Take-off
The foregoing leaves getting into the air as the last potential limit. Assuming a quadrupedal launch 

for pterosaurs (Habib 2008, Molnar 2009) means that a high proportion of  the launching forces come 

from the forelimbs, primarily the same muscles that are used for flight. To estimate the power required for 

launch it is necessary to know the source of  the forces that provide the vertical motion. Earls (2000) and 

Henry (2005) have shown that for birds 80% or more of  the lift-off  force comes from the hind limbs 

rather than the wings, so birds propel themselves ballistically into the air and then the wings take over. 

Presumably this was also the case for pterosaurs. On the basis of  these assumptions (quadrupedal launch 

and ballistic launch propelled by the forelimbs) a leap into the air was modelled using a time stepping 

simulation created in Excel. It was assumed that the leap was to sufficient height that when the wingtips 

were at the end of  the full downstroke of  the first wing stroke they just cleared the ground and also that 

there was sufficient forward speed to avoid wing stall, so the wings could take over in a smooth transition 

without loss of  height. Because the launch activity is very brief, it can draw on the anaerobic output of  

muscle, so a high specific muscle power of  400W per kilogram was adopted, a value that has been 

measured in extreme cases for birds (Askew et al. 2001). The analysis was run for a range of  values of  the 

wing flapping angle varying from 70 degrees to 120 degrees as well as for two different launch poses. 

Figure 8.8 shows an outline flow diagram for the calculation procedure.

A key aspect of  the calculation is the determination of  the skeletal geometry, which influences the 

range of  movement in the launch. Illustrations from Witton & Naish 2008 and Witton (2013:252) - see 

Figure 8.9, were used to determine the morphology at the point of  lift off  and also the possible crouched 

positions from which the animal propelled itself  into the air. These are important because the longer the 

launch “stroke”, the greater the potential impulse and thus launch velocity. Scaling from these diagrams 

(Figure 8.9) gave stroke lengths of  1.0m from a typical walking pose and 1.48m from an extreme crouched 

pose.

The results of  the simulations are shown in Figure 8.10 for both the “walking” and “crouched” 

launch strokes. It is immediately apparent that the required flight muscle mass fraction (FMMF) is very 

dependent upon the wing stroke angle - which is perhaps no surprise as this angle determines the required 

height of  the launch trajectory. Consequently, an indication of  the likely wing stroke angle is needed to 

interpret the results. While birds may not be the ideal analogues for pterosaurs (Witton & Habib 2010), 
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flapping flight has been shown to be subject to the same unifying fluid dynamic relationships regardless of  

the animal in question. In particular, recent work has shown the over-riding importance of  Strouhal 

number equivalence in flapping propulsion (Rohr & Fish 2004, Nudds et al. 2004, Sato et al. 2007, Aditya 

& Malolan 2007) and for this reason it is considered reasonable to refer to birds for information on the 

likely range of  wing stroke angles. However, as Nudds et al. (2004) noted, there are actually very few stroke 

angle measurements available in the literature, and what there are mostly apply to birds in cruising flight. 

For such flight, Nudds et al. (2004) retrieved a relationship between stroke angle and wingspan of  the 

form:

θ=67b-0.24

Where θ=stroke angle and b= wingspan. On this basis, the cruise stroke angles of  6m to 12m 

pterosaurs range from 44 degrees to 37 degrees (which agrees approximately with results in the flapping 

flight simulation reported by Strang et al. 2009). However, even superficial observation shows that birds 

employ a much greater wing stroke angle when taking off. Parslew & Crowther (2010) and Parslew (2014) 

present results for pigeons which suggest that while the cruising flapping angle may approach 90 degrees 

(compare this to a predicted value of  73 degrees using the Nudds et al. (2004) relationship) the angle at 

take-off  exceeds 150 degrees and is ideally 180 degrees. More subjectively, analysis of  slow motion films 

and photographs available on YouTube and other sources suggests that large birds of  prey flap their wings 

through at least 120 degrees, as do herons (long legged birds that use a leaping launch). See for example 

http://www.moorhen.me.uk/iodsubject/birds_-_herons,_egret_&_snipe_04.htm. This value would scale 

(assuming the Nudds et al. 2004 relationship) to 80 to 90 degrees for 12m and 6m sizes respectively.

Taken collectively, these rather varied results suggest that for large pterosaurs, the launch wing 

stroke angle probably need to be in excess of  80 degrees, but most likely does not need to exceed 120 

degrees.

Referring again to Figure 8.10, it is apparent that if  an 80 degree angle was adequate, then this 

could be achieved with less than 20% FMMF fraction for the 6m animals, increasing to 35% at 12m with 

the more conservative launch stroke length. However, to achieve 120 degrees, even the 6m animal with 

the extreme launch stroke length would require a FMMF of  40%, increasing to almost 80% for the 12m 

animal with a conservative launch stroke length.  These results suggest that while the 6m wing span 

animal could achieve a good takeoff  performance with FMMF less than 40% (the likely upper limit as 

discussed in Section 8.4), by 9m span the options are becoming constrained and at 12m the long stroke 

launch pose is required to avoid an extremely constrained envelope. Figure 8.11 presents these results in a 

different way, cross plotting at FMMF of  20% and 40%, the probable range for pterosaurs. It is now even 

clearer that at 20% FMMF the 12m wing span is unable to make a sufficiently deep initial wing stroke 

and requires the assumption of  the highest FMMF and launch stroke length to achieve flapping angles 

that are likely to provide adequate margin to ensure safe launch.
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As an independent check on this result, a relationship between maximum force exerted and animal 

size determined by Alexander (1985a) was applied to the launch results. Alexander (1985a) found that for 

a very wide range of  animal species, the maximum force ratio (ratio of  force to weight) they can exert on 

their environment scales as 20m-1/3. In Figure 8.12 the Alexander (1985a) values are plotted against the 

calculated maximum ground reaction force ratios for the short and long launch stroke simulations (since 

the forces are presented as ratios of  body mass, they collapse onto each other for the three animals sizes). 

At 12m span, the maximum stroke angle that can be achieved is about 75 to 90 degrees, increasing to 85 

to 115 degrees at 9m and more than 120 degrees at 6m. Here again the tight constraints on the 12m span 

are apparent, with the convex curvature of  the relationship progressively easing the severity of  the 

constraints as size decreases.

While none of  these observations are definitive, it is apparent that the launch stroke length and 

required initial wing flap angle are very significant parameters. At 12m span the results push hard against 

the limits of  both of  these constraints, suggesting that for real animals, which must operate with some 

margin of  safety for forced behaviour in non-optimal conditions, a wing span of  12m is very unlikely. 

That said, it may be that the actual limit can lie towards the upper part of  the range because the 

assumptions used in this analysis do take any account of  elastic stored energy. In small animals this can be 

a several times larger than the available muscle energy (Alexander & Bennet-Clark 1977), though as 

animals become larger this reduces. However the very long tendons in the pterosaur forelimb can 

potentially be a significant elastic energy store, providing added power margins for reliable launch.

[Authorship note: The concept of  the quadrupedal launch of  pterosaurs is original work by Mike 

Habib. He provided some preliminary calculations for the takeoff  power requirements, but this was 

completely re-written and recast for the analysis herein by including the addition of  the impulse area 

(Earls 2000), deriving the stroke length from skeletal illustrations and the using a time stepping method.]

8.5.6 The scaling of take-off dynamics
Before leaving the topic of  take-off, the overall scaling will be investigated in order to provide 

another analysis of  the severity of  the constraints. For a ballistic limb powered launch, the applied 

impulse is equal to the change in momentum (Bedford & Fowler 2008: Dynamics:224) and since the initial 

velocity (and hence momentum) is zero:

Impulse (I) =mV and hence V=I/m

Also for a projectile launched upwards against gravity with vertical velocity component V, the 

height it reaches (h) can be found from:

h=V2/2g (Bedford & Fowler 2008: Dynamics:51)

Now, assuming that the height reached is a constant proportion of  the animal’s wing span (to ensure 

a constant wing flapping angle), then:
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h∝m⅓ and 

h∝(I/m)2

From which it follows that the required impulse to achieve the clearance height is proportional to 

length7/2.

Now, the actual impulse (the impulse available) is the integral of  force over time, so:

I∝Ft 

Using the Alexander (1985a) relationship for force:

F/m=20m-1/3

So F∝m2/3 and in consequence the impulse available I∝l5/2, which has a much lower exponent that 

the impulse required.

The only allometric “lever” available is the launch stroke length, since if  this is increased then the 

actual duration of  the launch impulse can be increased. Since the duration of  the launch stroke will be 

the stroke length x velocity, it can be shown that the stroke must scale as length2, a powerful negative 

allometry, confirming that the launch mechanics are likely to place a relatively sharp upper limit on size.

8.6 Summary
Muscle flight power, which has often been used to estimate limits to the size of  flying vertebrates, 

does not appear to constrain pterosaurs to be less than 12m in wingspan.  Wing bone strength is more 

than adequate at that size although the aerodynamic efficiency is slowly compromised due to the 

disproportionate increase in wing bone diameter, which may serve as a weak limit somewhere above 12m.  

Landing may possibly be an issue but landing speeds do remain relatively modest even up to 12m. 

However, any limit will be difficult to determine with precision as the calculations also need to consider 

the ability of  the body structures to absorb kinetic energy, which requires a model of  the strain energy 

characteristics of  the musculoskeletal structures. 

In contrast, launch does appear to be a strongly limiting factor. Assuming a forelimb muscle mass 

fraction of  up to 40% appears to limit size to between 9m and 11m.

Even at 9m, giant pterosaurs are significantly larger than the largest recorded birds, which are 

thought to have had maximum wingspans of  6m to 7m (Campbell & Tonni 1983, Vizcaino & Farina 

1999, Palmqvist & Vizcaino 2003, Ksepka 2014) and much larger than the largest extant birds. 

What was it about pterosaurs that enabled them to reach so much greater sizes than birds?

Firstly, they were capable of  relatively slow flight since their flexible, membrane wings enabled them 

to have high camber wing sections and consequently much higher maximum lift coefficients than birds. 

Since power is the product of  drag and speed, their power requirements were correspondingly less for the 

same total body mass. 
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Secondly, they were able to use the same muscles for flight as for take-off, whereas birds have to 

separate these two functions. This means that pterosaurs are potentially able to recruit a larger fraction of  

total muscle mass for launch (since they did not need to split muscle mass between hind and fore limbs in 

the manner of  birds), and consequently have significantly greater launch power available. 

Lastly, by using the forelimbs for launch, they can potentially achieve a longer launch stroke and 

greater launch impulse than birds.
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Summary and Conclusions

History of reconstructions
Ever since the first discoveries and recognition of  pterosaur fossils in the late 18th century, attempts 

have been made to reconstruct their mode of  life and flight style. At first they were likened to bats but 

gradually their reptilian origins became recognised and by the early 20th century reconstructions were 

looking much as they do today. The first detailed attempts to reconstruct pterosaur aerodynamics were 

made by Hankin & Watson (1914) and Short (1914) but it was not until the 1970s and 1980s that 

researchers such as Bramwell & Whitfield (1974), Stein (1975), Brower (1983), Sneyd (1984), Padian 

(1985), Pennycuick (1988) and Hazlehurst & Rayner (1992) started to make detailed analyses. Famously, in 

1985, Dr Paul MacCready, an aerodynamics researcher, and his team built a successful full scale flying 

“replica” of  Quetzalcoatlus northropi. More recently, attention has also turned to attempting to understand 

the wing membranes (Padian & Rayner 1993, Bennett 2000, Elgin et al. 2009 amongst others) as well as 

the myology (Bennett 2007, Prondvai & Hone 2008) and functional assessments of  the skeletal 

morphology (Wilkinson 2006, 2008) and Witton & Habib (2010).

All these studies have been hampered and ultimately limited in their veracity by two key areas 

where information has been lacking - the aerodynamic performance of  the wing sections and the 

structural capabilities of  the wing spar. Without this information it is impossible to create reliable 

estimates of  flight performance or of  the potential effects of  structural flexibility.

To address these deficiencies, two programs of  data collection were undertaken. The first used wind 

tunnel testing to measure the aerodynamic performance of  a wide range of  possible pterosaur wing 

sections and the second was to measure wing bone morphology, including in particular the bone cross 

sections and internal structure, from which to estimate the bending stiffness.

Wind tunnel tests
The wind tunnel tests were conducted in a facility at University College, Dublin and evaluated the 

aerodynamic characteristics of  sections representative of  both proximal regions where the propatagium is 

present, and more distally where it is absent. The effect of  different wing bones shapes, their positions 

relative to the membrane and the relative sizes of  wing bone and membrane were quantified, providing a 

unique dataset from which reliable three dimensional wing performance could be predicted for the first 

time.
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3D flight models
The three dimensional flight models were used to reconstruct the flight polars for gliding flight - the 

variation of  descent (sink) speed with flight speed. The results showed that the flight efficiency of  

pterosaurs (as measured by the ratio of  lift to drag) was inferior to all previous estimates. This was because 

the likely wing sections were inferior to the sections that had previously been assumed, which did not 

account for the presence of  the leading edge wing bones. However, it also revealed that the flexibility and 

high curvature (camber) of  the membrane sections resulted in higher maximum lift coefficients, which 

translated to improved low speed flight performance. The flight envelope was thus extended in the low 

speed regime, which reduced the power required for takeoff  and improved the landing margins of  safety.

Effects of wing shape and flexibility on flight performance
In addition to the wind tunnel testing and reconstruction of  3D flight performance from these 

results, the effect of  overall wing morphology (planform and lift distribution along the wing) on induced 

drag was investigated using vortex lattice computational fluid dynamics. This also allowed the accurate 

calculation of  the location of  the aerodynamic centre of  pressure, which must be coincident with the 

centre of  mass in steady flight. In order to achieve this balance, it was found that the wings required 

considerable anterior sweep - much more than is commonly shown in reconstructions. 

The basic morphology of  the single supporting spar in the pterosaur wing dictates that the wing 

membrane must taper in width progressively from the proximal attachment to the wing tip, where it 

becomes extremely narrow. Conventional aerodynamics (Anderson 2007:420) suggests that this highly 

tapered planform is very inefficient due to elevated levels of  induced drag (the drag due to lift.) However, 

if  the wing tip is curved posteriorly, to create what is known as a “lunate” shape (familiar in nature from 

the tails of  fast swimming fish for example) then the aerodynamic efficiency is greatly improved. The 

combination of  membrane tension and distal wing bone flexibility (WP4 in particular) likely made such a 

shape possible, allowing the highly tapered membrane to create an aerodynamically efficient morphology.

The vortex-lattice analysis also informed an assessment of  the pitch stability and suggested that the 

combination of  anterior sweep and wing flexibility could, with the right dynamics, be a novel feature that 

confers static stability in pitch without the high induced drag penalty characteristic of  conventional flying 

wings.

Wing bone morphology
The pterosaur literature contains very little information on the three dimensional wing bone 

geometry. Sources such as Wellnhofer (1985, 1991b) and Bennett (2000) provide outlines in orthogonal 

views, but very little information about the cross section shape. They are almost silent on the internal 

structure. To address this deficiency, a program of  museum visits was undertaken, seeking out wing bones 
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that were broken or damaged, allowing the cross section to be seen. A series of  thin sections prepared by 

Steel (2005) were also examined. At the time this work was being started, CT scanning of  fossils was 

rapidly becoming accessible and the technique was therefore used to provide the main body of  

information required. High quality scans of  the first three wing phalanges were obtained and combined 

with observations and thin sections (Steel 2005) of  broken specimens of  the more proximal bones and the 

fourth wing phalanx. This provided a definition of  the external shape and cortical thickness of  a 

representative 3m long wing spar. ImageJ software was then used to determine the cortical area and 

second moments of  area of  the cross sections at regular intervals along the wing bones. 

Structural modelling
Two options were evaluated for the analysis of  the wing spar structure, finite element analysis (FEA) 

and simple beam theory. To undertake an FEA analysis the wing bone cross section information would 

have needed to be converted into continuous three dimensional models in order to generate the FEA 

meshes. Whilst techniques exists to do this, the time required would have been out of  all proportion to the 

remainder of  this study. As an alternative, a simple beam theory model was constructed in Excel. It was 

validated against analytical solutions for tapered beams and simple FEA models and provided results that 

were within a few percent of  these results. It allowed the dorsoventral and anteroposterior deflections to 

be evaluated but took no account of  torsion.

Structural performance
The analysis of  the cross section properties revealed a hitherto unknown feature of  the wing 

structure: the proximal bones (distally to the metacarpal) were stiffer dorsoventrally than anteroposteriorly, 

by a ratio of  1.5 to 2 to 1. This changed abruptly at the first wing phalanx, were the ratio was reversed 

and was maintained at 2:1 in WP2 and WP3. The fourth wing phalanx was much thicker walled than the 

others with stiffness more or less the same in all axes. This pattern of  stiffness distribution is interpreted as 

a response to the dual requirements of  controlling the wing tip deflection whilst at the same time 

providing a structure that can support the levels of  membrane tension required to suppress aeroelastic 

flutter.

The dorsoventral bending moment is directly related to the aerodynamic lift forces, which in turn 

depend on the total body mass.  A range of  lift distributions and body masses were investigated and the 

resulting tensile stresses along the wing spar calculated. Under the extreme assumptions (the use of  Witton 

(2008) mass estimates and the most efficient lift distribution from the XFLR5 analyses) these stresses came 

close to the yield stress of  high modulus bone, suggesting that the Witton (2008) mass is very close, if  not 

beyond the upper practical limit. Under these conditions the tip deflection was around 0.7m.
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Membrane tension and flutter limits
An allowable (tensile) strain approach was used to evaluate the structural performance of  the wing 

spar in the anteroposterior plane, which provided an indication of  the upper limit of  membrane tension 

that was achievable. If  the wing bones were strained to their practical limit they could resist a membrane 

tension of  between 500N/m to 1,000N/m. An analysis of  the flutter boundaries of  tensioned membranes 

subject to air flows (Watanabe 2002) showed that tensions of  this magnitude were sufficient to suppress 

membrane flutter over the likely flight speed range of  the animal. However, the membrane must also 

retain its shape and not “balloon” excessively under load. In order to resist the required membrane 

tensions and the effects of  the aerodynamic pressure loads without excessive stretch (less than a few 

percent) a high modulus material was indicated, with a tensile stiffness greatly in excess of  the membranes 

of  bats for example. In order to achieve the required modulus (and remain thin) the composition of  the 

membrane was postulated to include a substantial fraction of  nature’s highest modulus (flexible) material, 

keratin, confirming Bennett’s (2000) view of  the composition of  the reinforcing aktinofibrils.

Limits to size
There appears to be little doubt that pterosaurs the size of  Pteranodon (around 7m wingspan) were 

capable fliers (Bennett 2000, Unwin 2006:194, Witton 2013:56-63 for example), but the flight abilities (or 

possible flightlessness) of  the pterosaur giants, the azhdarchids are more contentious (Sato et al. 2009, 

Henderson 2010). The latest estimates (Witton & Habib 2010, Witton et al. 2010) suggest that these 

animals attained a wingspan of  at least 10m and weighed as much as 250kg. When the limits to size of  

birds have been studied, the approach generally adopted has been to compare the power required with 

the power available. Since basic isometric scaling implies that the latter scales with a lower exponent of  

size, there must at some point be a cross over, which represents an upper limit to size. Investigation of  this 

approached showed that in practice the location of  the cross-over point depended very heavily on the 

underlying assumptions about the bird morphology and aerodynamic performance, to the extent that in 

some cases the answer could not be narrowed down to closer than between 1kg and 100kg, in others there 

was no convergence at all!

As an alternative approach, an allometrically scaled series of  azhdarchid forms were modelled in 

silico with wingspans ranging from 6m to 12m. The results showed that the power (and structural strength) 

limit approaches did not limit size within this range and probably had cross-overs towards 15m wingspan 

or more. The dynamics of  landing and takeoff  were also investigated and these behaviours were found to 

be more limiting. Take off  in particular proved very onerous and scaled with strong negative allometry, 

leading to the conclusion that the practical maximum size of  an azhdarchid capable of  unassisted take-off  

from level ground was in the range between 9m and 11m wingspan.
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The pterosaur advantage
The largest extant birds have wingspans of  around 3m and the giants of  the fossil record do not 

appear to have exceeded 7m (Palmqvist et al. 2003, Ksepka 2014), significantly smaller than the largest 

pterosaurs. What was it about pterosaurs that enabled them to evolve to larger sizes than birds? First, the 

flexible wing membrane gave higher maximum lift coefficients, which allowed lower speed flight relative 

to size, with consequent reductions in power requirements and an expanded safe landing envelope. 

Secondly (assuming that pterosaurs did use the quadrupedal launch technique proposed by Habib 2008) 

they could recruit a larger proportion of  muscle mass to power takeoff. Thirdly, because in this case the 

majority of  the take-off  force was developed in the forelimbs, the range of  motion was potentially greater 

than for birds, resulting in a larger launch impulse.

Hypothesis testing
Against this background, I can now return to address the underlying hypothesis of  the research, 

that:

 Wing flexibility was a significant factor in defining the aerodynamic 

performance. 

In a structural sense, flexibility does not appear to be a significant limiting factor. Fundamental 

scaling dictates that as flying creatures (or indeed man-made flying machines) become larger they must 

use progressively higher performance (specifically higher modulus, higher strength) materials to control 

deflection and provide adequate stress factors of  safety. However, for pterosaurs of  up to 12m wing span 

(or maybe more) it appears that nature’s materials are adequate. The wing tip deflections due to 

aerodynamic lift of  a 3m wing appear to be around 0.7m, which is only a little more than the unloaded 

ventral deflection that results from natural curvature in the wing bones. In other words, in gliding flight 

the wing tips could readily be held almost level with the glenoid. The factors of  safety of  the wing bone 

stresses are low, as is to be expected in a weigh sensitive flying animal, but adequate. In fact it is stress 

rather than deflection that drives the wing spar structure as size increases. The bone cross section scales 

with positive allometry, but with a small exponent that means the effects on aerodynamic performance 

and skeletal mass are small.

In an aeroelastic sense, flexibility is very significant. An analysis of  the interaction between wing 

torsional deflection (twist) and static pitch stability suggests a mechanism whereby if  the wing flexibility is 

correctly tuned, it might provide static stability in pitch. This is potentially advantageous in that other 

methods of  achieving static pitch stability in flying wings carry a significant aerodynamic induced drag 

penalty.

The wing membrane itself  is also clearly a flexible structure. This has advantages in that the 

resulting wing airfoils can generate high lift and have soft stall characteristics, which aid low speed flight 
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and control. Extending the flight envelope to low speeds reduces power requirements and assists in takeoff  

and landing, which appear to be one of  the keys to gigantism in pterosaurs.

However, flexible membranes have the disadvantage that they are vulnerable to aerodynamic 

flutter, which has catastrophic effects on flight efficiency. The tendency to flutter depends to some extent 

on the weight, thickness and stiffness of  the membrane (a lightweight, stiff  material being best) but it is 

overwhelmingly a function of  the tension in the membrane, which increases with the third power of  the 

flight speed. Thus as pterosaurs became larger and consequently flew faster, the membrane tension had to 

increase very rapidly, requiring either a thicker (and consequently heavier) membrane or one with 

increasingly high tensile properties. This suggests strongly that the reinforcing aktinofibrils were made of  a 

high modulus material such as keratin and that the wing membrane of  pterosaurs was very different from 

that of  bats. It may also be that this severe scaling is another factor that sets limits to size, due to the wing 

membrane having to become excessively stiff  and heavy, but that is a study that will have to wait until 

another time.

So, yes, flexibility is an important factor in the aerodynamic and structural performance of  

pterosaurs, conferring both benefits and constraints. It may in part explain why they were able to grow so 

large, but also be a factor which influences the eventual upper limit to size.
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Future work
This study has attempted to cover many aspects of  the morphology and flight dynamics of  large 

pterosaurs. As such some of  the methods have been somewhat approximate, but suited to establishing 

baselines where none existed before. It would benefit from further development in the following ways.

Structural analysis
The wing spar structure was analysed using a simple quasi-static two-dimensional beam theory 

model, which broke the spar down into a number of  individual sections, assumed to be rigidly connected 

elements characterised only by their second moments of  area and section depth. Validation against 

known solutions showed that it gave reasonable results, but there is no doubt that a structural member 

subject to large deflection experiences non-linear effects that are not captured by this type of  analysis. 

Also the dorsoventral and anteroposterior loads were treated separately, whereas in reality there will be 

coupling between them, creating torsional loading and complex deflections in three-dimensional space.

A problem such as this can only be fully captured by a finite element analysis, wherein the wing 

spar is modelled in fine detail and combined aerodynamic and membrane loads are applied. This is a 

PhD in itself. The membrane tension loading in particular is very complex and, as discussed, the 

development of  the mesh required for the FEA analysis is a non-trivial endeavour. However, once such a 

model is developed, it has potential for more uses than simply determining the quasi-static response to 

loading. It could for example be extended to examine the structural performance in flapping flight or 

when manoeuvring. 

Sweeping assumptions were made about the behaviour of  the soft tissue on the wing spar, so a 

deeper analysis of  the muscular-tendon anatomy of  the wing bones would be beneficial, providing 

estimates of  muscular anatomy and how the soft tissues influence deflection and load resistance.

Coupled FEA/CFD analysis
Another use for a FEA structural model would be to couple it with a CFD code (initially an 

unsteady panel code will probably be adequate) to fully simulate the flapping dynamics and determine the 

effects of  differing levels of  joint mobility. It could also provide more insight into the somewhat 

speculative suggestion that the combination of  anterior sweep and wing flexibility provides static pitch 

stability.
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Physical modelling
There is a time honoured alternative to this computational approach, namely the construction and 

testing of  physical models. A pterosaur specific program of  wind tunnel model testing could provide 

further information on the flutter characteristics of  the membrane and large scale, or ideally full scale 

flying models could provide illuminating insights, if  in a somewhat uncontrolled manner.

Limits to size and the quadrupedal launch
The parametric study described herein used very generalised and simplified calculations to start to 

investigate what factors may limit the size of  giant pterosaurs. An area of  particular interest is the almost 

unique quadrupedal mode of  launch that pterosaurs are believed to have adopted. This was only assessed 

from the perspective of  muscle power and simple forelimb geometry as it affects the length of  the launch 

stroke. Clearly many other factors need to be considered before such a model can be considered to be 

reliable. This can only be achieved by musculoskeletal modelling using techniques such as OpenSIM. 

A factor not considered in the search for the limits to size was the membrane tension. Potentially, 

this appears to scale with strong positive allometry, which may mean that it has powerful effects on the 

required bending stiffness in the wing spar and drive a requirement for a disproportionately thick (and 

heavy) membrane.
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Glossary

Aerodynamic terminology
Aspect ratio (AR): a measure of  the slenderness of  a wing. Calculated as either the ratio of  the mean 

chord to the wing span, or more generally as span2/wing area. Larger values denote more slender wings.

Dihedral: the upward angle from the horizontal of  wings where they meet the body. In cases where the 

angle is downwards, the geometry is referred to as anhedral. Dihedral and anhedral influence the roll 

stability in flight. 

Lift coefficient (CL) and drag coefficient (CD): non-dimensional values for aerodynamic lift and 

drag. Lift and drag are defined as the aerodynamic forces resolved normal and parallel to the incident 

airflow direction respectively. Lift coefficient is abbreviated to Cl where it applies to a local wing section 

and CL to a three-dimensional structure such as an complete airplane (similarly Cd and CD). They are 

calculated as:

Where:

L=lift force (N)

ρ=air density (kg/m3)

S=wing projected surface area (m2)

V=air speed (m/s)

For any given airfoil or complete flying body there will be a maximum lift coefficient, at which stall 

occurs. This is abbreviated to CLmax.

When a three dimensional wing produces lift, there is an increase in drag, the so called drag due to lift 

or induced drag, CDi
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Induced drag can be calculated from the following formula:

Where CL and AR have the meanings defined above. This formulation is for a “perfect” wing and real 

wings often produce more induced drag, which is quantified by a constant “e” inserted as below:

“e” depends on the lift distribution along the wing and is a measure of  the deviation from an “perfect” 

elliptical shape. It is termed the span efficiency.

Oswald efficiency. The drag of  a wing section comprises a frictional component and a pressure 

component, which are normally combined as the profile drag, giving the non-dimensional profile drag 

coefficient Cdpro.

In fact, the profile drag coefficient of  a wing section varies with the lift coefficient, so the total three 

dimensional drag can be expressed as:

Where CD0 is the drag at zero lift and e is the Oswald efficiency, which takes account of  not only the 

induced drag as above but also the variation of  the profile drag coefficient with CL. Confusingly the 

Oswald efficiency is abbreviated to e, so it is important to distinguish between it and the span efficiency 

above. (See Spedding & McArthur 2010 for a very succinct explanation.)

Wing twist (wash-out and wash-in). For reasons of  stability or minimising the induced drag, twist 

may be introduced along the length of  a wing. When this twist is such that the more distal sections are 

rotated to be more “nose down” (with the leading edge ventral to the trailing edge) this twist is called 

wash-out. The opposite is wash-in. The 

total aerodynamic force (which is 

generally in a more or less vertical 

direction in normal flight) is assumed to 

act through a single point, the Centre of  

Pressure, CP. Similarly, the force due to 

gravity, the weight, is assumed to act 

through the Centre of  Mass, CM. 

These points are illustrated in the 

adjacent sketch (taken from Figure 7.1). 
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Reynolds number. The forces in a flowing fluid are a combination of  frictional (viscous) and inertial, 

and the ratio of  the two has profound effects on the flow characteristics. This ratio is captured by the 

Reynolds number

Where:

L=a characteristic length (the wing chord for example) (m)

V=speed of  fluid flow (m/s)

ρ=mass density of  the fluid (kg/m3)

μ=viscosity of  the fluid (Pa.s)

Aerodynamic/biological dictionary
Inboard = proximal

Outboard = distal

Pitch = vertical (dorsoventral) rotation about the transverse axis.

Spanwise = mediolaterally along a wing

Chord=the local width (in anteroposterior direction) of  a wing

Wingspan=the distance from one wing tip to the other

Leading edge = anterior margin of  a wing

Trailing edge = posterior margin of  a wing

Structural terminology
Young’s modulus E. A measure of  the stiffness of  a material, defined as the ratio of  stress to strain. So:

Where:

ε=strain (non-dimensional)

σ=stress (Pa)

Section modulus I. The resistance of  a beam section to bending (under simple beam theory) is 

determined by the product of  the Young's modulus and the section modulus I, where I is the second 

moment of  area of  the cross section.

Beam theory equations. Under simple beam theory, the deflection of  a beam is inversely proportional 

the EI. The stress distribution across the section is defined by:
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Where σ=stress (Pa), 

M =bending moment (N.m)

y=distance from the neutral axis (m)

(Sketch modified from Gordon 1978)
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Annex 1 

Materials and Methods

Wind tunnel testing

Wing bone sections and wing reconstruction
The wing phalanx sections were based upon measurements taken from a detailed specimen 

description Wellnhofer (1985) and from measurements of  specimens in the collections at Karlsruhe 

Museum (three dimensionally preserved Brazilian material: C. robustus (SMNK 1133); Ornithocheiridae 

indet. (SMNK 1134PAL, SMNK 1135PAL)), the Natural History Museum in London, specimens labeled 

‘ornithocheirid sp.’ in the collections of  three-dimensionally preserved specimens from the Greensand in 

the Sedgwick (Cambridge UK) and York (York, UK) museums. Wing size assumptions (required to 

estimate the wing section chord) were based on published reconstructions of  Pteranodon (Bramwell & 

Whitfield, 1974, Bennett 2007 ) and Anhanguera sp. (Wilkinson 2008).

Models
The wing section models were made in both rigid and flexible forms. The rigid sections were made 

by laminating fibre reinforced composite over a male mould, with hand finishing. The mould was made 

by arching a stiff  piece of  plastic sheet, secured to a firm base by wooden blocks. The laminate comprised 

a thin 50g scrim of  finely woven glass fibres followed by three layers of  2x2 twill weave carbon fibre, with 

the inner layer laid on the bias. Another thin scrim was placed on top. The fibres were impregnated by 

hand with SP 106 multipurpose epoxy resin, consolidated by stippling with a stiff  brush. When cured the 

upper surface was given a thin coat of  filled epoxy resin (West System 407 low density filler) and hand 

finished to a smooth surface, finishing off  with 600grit paper.

The leading edge spar sections were carved by hand from fine grained softwood and attached with 

countersunk screws. The joints and screws were faired with plasticine.

The flexible wing membrane were made by laminating a sheet of  latex rubber (Latex Dipping 

Rubber), embedding within the laminate threads of  black sewing cotton. 

Model tests
The wind tunnel used was a Plint TE 44 Subsonic open jet wind tunnel with a working cross 

section of  457 mm x 457 mm. The mean turbulence level is less than 0.7% r.m.s. and velocity variation 
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less than +/- 1.0% outside the boundary layer. Forces were measured with a Plint three component 

balance.

Computer models and calculations
Two proprietary pieces of  aerodynamic software were used: 

XFLR5 (http://www.xflr5.com/xflr5.htm) for three dimensional wing analysis. XFLR5 has wing 

design and analysis capabilities based on the lifting line theory, the vortex lattice method (VLM) and on a 

3D panel method. It also includes XFOIL so allowing wing sections to be incorporated. The VLM option 

was used since tests showed that the 3D panel method gave identical results but was computationally 

more demanding.

XFOIL (http://web.mit.edu/drela/Public/web/xfoil/), an interactive program for the design and 

analysis of  subsonic isolated airfoils in viscous (or inviscid) flow regimes.

Three Excel based codes were specially developed for the project:

Beam theory model for the analysis of  the wing spar. Portsmouth moments XFLR lift distribution.xlsx

Time stepping model for analysis of  landing dynamics. Flight path.xlsx

Time stepping model for analysis of  take-off  dynamics. This model was developed in consultation 

with Mike Habib. Take off  power 6 Sep 2015.xlsx
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